Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

-Oligo(phenylene)ethynylenes (-OPEs) stapled with enantiopure 2,3-dihydroxybutane diethers have highly intense circular dichroism (CD) spectra and excellent circular polarized luminescence (CPL) responses ( values up to 1.1 × 10), which are consistent with homochiral helically folded structures. In the presence of Ag(i), a change in the CPL emission is observed, representing the first example of CPL active small organic molecular emitters, which can be modulated by carbophilic interactions in a reversible manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6022022PMC
http://dx.doi.org/10.1039/c6sc01808dDOI Listing

Publication Analysis

Top Keywords

polarized luminescence
8
carbophilic interactions
8
stapled helical
4
helical -ope
4
-ope foldamers
4
foldamers circularly
4
circularly polarized
4
luminescence emitters
4
emitters based
4
based carbophilic
4

Similar Publications

Pure-Green Circularly Polarized Multiple Resonance Thermally Activated Delayed Fluorescence Enantiomers with Discontinuous Fused Benzene Rings.

Adv Mater

September 2025

State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China.

Helicene-based circularly polarized luminescence (CPL) materials suffer from severely low color purity in circularly polarized organic light-emitting diodes (CP-OLEDs). Here, a novel molecular engineering strategy is introduced by replacing helicene containing continuous fused benzene rings with a multiple resonance (MR) framework comprising discontinuous fused benzene rings. This approach effectively suppresses high-frequency C─C bond stretching vibrations and enhances short-range charge transfer, enabling high color purity, CPL activity, and efficient thermally activated delayed fluorescence (TADF).

View Article and Find Full Text PDF

Circularly polarized luminescence (CPL) has emerged as a critical technology for anticounterfeiting and optical display applications due to its unique chiroptical properties. We report a multicolor CPL-emitting elastomeric film (P37/PSK@SiO-PDMS) that synergistically combines chiral helical polyacetylene (P37) and a surface-engineered perovskite (PSK@SiO) through hydrogen-bond-directed assembly. Confinement within the PDMS matrix drives P37 to self-assemble into a chiral supramolecular structure through hydrogen bonding, inducing a chiroptical inversion.

View Article and Find Full Text PDF

Regulating the electronic structure by doping can promote photoluminescence emission of low-dimensional metal halides for developing white-light-emitting devices. Here, 0D metal halides RbBiCl have achieved a transition from nonluminescence to effective self-trapped excitons (STEs) emission after Sb ion doping at room temperature. The femtosecond transient absorption spectrum reveals the nonradiative recombination was suppressed, whose lifetimes change from 93.

View Article and Find Full Text PDF

Helicenes are circularly polarized luminescence (CPL)-active but suffer from a fundamental tradeoff between fluorescence quantum yield (Φ) and luminescence dissymmetry factor (||). Herein, we present a strategy combining lateral π-extension and helical elongation in carbazole-embedded helicenes to address this challenge. Specifically, π-extended diaza[7]helicene () and diaza[9]helicene () were synthesized and characterized, revealing nearly a 2-fold increase in Φ and a 6-fold enhancement in || from to .

View Article and Find Full Text PDF

Helically ordered chiral super spaces enable optical chirality in hybrid organic-inorganic perovskite crystals.

J Colloid Interface Sci

September 2025

Department of Advanced Materials Engineering for Information & Electronics, Kyung Hee University, Gyeonggi-do 17104, Republic of Korea. Electronic address:

We present a supramolecular templating strategy for inducing chirality in hybrid perovskites via confined crystallization within chiral super spaces-nanoconfined, helically ordered cavities formed by the self-assembly of achiral bent-core molecules with chiral additives. Upon removal of the additives, the resulting porous films retain permanent chirality. Quasi-2D hybrid organic-inorganic perovskites crystallized within these templates exhibit distinct chiroptical activity, including mirror-image circular dichroism and circularly polarized light emitting (CPLE), with CPLE dissymmetry factors reaching up to 1.

View Article and Find Full Text PDF