98%
921
2 minutes
20
Gas chromatography-mass spectrometry (GC-MS) is a versatile analytical method but its data is usually complicated by the presence of severely co-eluting and trace-level components. In this work, we introduce an optimized band-target entropy minimization approach for the analysis of complex mass spectral data. This new approach enables an automated mass spectral analysis which does not require any user-dependent inputs. Moreover, the approach provides improved sensitivity and accuracy for mass spectral reconstruction of severely co-eluting and trace-level components. The accuracy of our approach is compared to the automatic mass spectral deconvolution and identification system (AMDIS) with two controlled mixtures and a sample of Eucalyptus essential oil. Our approach was able to putatively identify 130 compounds in Eucalyptus essential oil, which was 46% in excess of that identified by AMDIS. This new approach is expected to benefit GC-MS analysis of complex mixtures such as biological samples and essential oils, in which the data are often complicated by co-eluting and trace-level components. Graphical abstract ᅟ.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00216-018-1260-y | DOI Listing |
J Ethnopharmacol
September 2025
The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, China; Key Laboratory of Research and Transformation on Prevention and Treatment of Major Diseases in Internal Medicine of Traditional Chinese Medicine, Ministry of Education, Changsha 410007, China. Electronic address: mic
Ethnopharmacological Relevance: Primary dysmenorrhea (PD) is common and has a major impact on women's daily activities and quality of life. Wenjing Decoction (WD), a classic Chinese medicine formula, has been widely used for thousands of years in China to treat PD. However, the key pharmacodynamic substances in WD responsible for its anti-dysmenorrhea efficacy are still unclear.
View Article and Find Full Text PDFMar Environ Res
September 2025
Shandong Key Laboratory of Coastal Environmental Processes, Yantai, Shandong, 264003, China.
Coastal zones are critical for the biogeochemical cycling of dissolved organic matter (DOM) in marine ecosystems, yet the relative importance of photochemical and microbial degradation in DOM transformation remains poorly understood due to complex hydrodynamics, diverse sources, and human activities. Through 14-day laboratory incubations, we investigated DOM transformation mechanisms from three common marine coastal space uses: port, mariculture and inshore areas adjacent to Yantai City. DOM characterization was performed using fluorescence excitation-emission matrix parallel factor (EEM-PARAFAC) and UV-Vis spectroscopic indices.
View Article and Find Full Text PDFLight Sci Appl
September 2025
Key Lab of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, 230031, Hefei, China.
Marine vessels play a vital role in the global economy; however, their negative impact on the marine atmospheric environment is a growing concern. Quantifying marine vessel emissions is an essential prerequisite for controlling these emissions and improving the marine atmospheric environment. Optical imaging remote sensing is a vital technique for quantifying marine vessel emissions.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
September 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
An ongoing goal of top-down mass spectrometry is to increase the performance for larger proteins. Using higher energy activation methods, like 193 nm ultraviolet photodissociation (UVPD), offers the potential to cause more extensive fragmentation of large proteins and thereby yield greater sequence coverage. Obtaining high sequence coverage requires confident identification and assignment of fragment ions, and this process is hampered by spectral congestion and low signal-to-noise ratio (S/N) of the fragment ions.
View Article and Find Full Text PDFMethods
September 2025
Gynaecology and Obstetrics, The Second Affiliated Hospital of Harbin Medical University, Harbin Medical University, Heilongjiang 150081, PR China. Electronic address:
Single-cell surface-enhanced Raman scattering (SERS) has emerged as a powerful tool for precision medicine owing to its label-free detection, ultrasensitivity, and unique molecular fingerprinting. Unlike conventional bulk analysis, it enables detailed characterization of cellular heterogeneity, with particular promise in circulating tumor cell (CTC) identification, tumor microenvironment (TME) metabolic profiling, subcellular imaging, and drug sensitivity assessment. Coupled with microfluidic droplet systems, SERS supports high-throughput single-cell analysis and multiparametric screening, while integration with complementary modalities such as fluorescence microscopy and mass spectrometry enhances temporal and spatial resolution for monitoring live cells.
View Article and Find Full Text PDF