Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Mutations in proteins like FUS which cause Amyotrophic Lateral Sclerosis (ALS) result in the aberrant formation of stress granules while ALS-linked mutations in other proteins impede elimination of stress granules. Repeat expansions in C9ORF72, the major cause of ALS, reduce C9ORF72 levels but how this impacts stress granules is uncertain. Here, we demonstrate that C9ORF72 associates with the autophagy receptor p62 and controls elimination of stress granules by autophagy. This requires p62 to associate via the Tudor protein SMN with proteins, including FUS, that are symmetrically methylated on arginines. Mice lacking p62 accumulate arginine-methylated proteins and alterations in FUS-dependent splicing. Patients with C9ORF72 repeat expansions accumulate symmetric arginine dimethylated proteins which co-localize with p62. This suggests that C9ORF72 initiates a cascade of ALS-linked proteins (C9ORF72, p62, SMN, FUS) to recognize stress granules for degradation by autophagy and hallmarks of a defect in this process are observable in ALS patients.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6052026PMC
http://dx.doi.org/10.1038/s41467-018-05273-7DOI Listing

Publication Analysis

Top Keywords

stress granules
24
c9orf72 p62
8
granules autophagy
8
mutations proteins
8
elimination stress
8
repeat expansions
8
p62
6
stress
6
granules
6
proteins
6

Similar Publications

Objectives: To exple the mechanism of Granules (QXZG) for enhancing synaptic plasticity in aging rats.

Methods: Forty SD rats were randomized into control group, aging model group, donepezil treatment group, and QXZG treatment group (=10). Except for the control rats, all the rats were subjected to daily intraperitoneal injection of D-galactose for 8 consecutive weeks to induce brain aging, and donepezil hydrochloride and QXZG suspension were administered by gavage during modeling.

View Article and Find Full Text PDF

Lysosomes are essential for cell survival but are highly susceptible to diverse physical and pathological stressors. Thus, the ability to initiate an acute damage response and promote recovery after stressor resolution is critical for maintaining cellular homeostasis and viability. Although recent studies have advanced our understanding of acute responses to lysosomal injury, the molecular mechanisms governing the recovery stage and distinguishing it from the acute phase remain poorly defined.

View Article and Find Full Text PDF

Proteomic insights into lipid degradation and volatile compound changes during foxtail millet storage.

Food Chem

September 2025

College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China; National Center of Technology Innovation in Food Industry, China Agricultural University, China. Electronic address:

Foxtail millet quality deteriorates during storage, but the mechanisms behind aging-related changes are not fully understood. This study investigated lipid degradation and volatile compound changes in stored foxtail millets, employing proteomics to uncover underlying quality decline mechanisms. After 30 days, fatty acid contents increased, accompanied by a general coarser grain surface texture.

View Article and Find Full Text PDF

This study investigates the mechanism by which Xintong Granules improve myocardial ischemia-reperfusion injury(MIRI) through the regulation of gut microbiota and their metabolites, specifically short-chain fatty acids(SCFAs). Rats were randomly divided based on body weight into the sham operation group, model group, low-dose Xintong Granules group(1.43 g·kg~(-1)·d~(-1)), medium-dose Xintong Granules group(2.

View Article and Find Full Text PDF

Cancer Cell-Secreted miR-33a Reduces Stress Granule Formation by Targeting Polyamine Metabolism in Stroma to Promote Tumourigenesis.

J Extracell Vesicles

September 2025

State Key Laboratory of Metabolism and Regulation in Complex Organisms, Hubei Provincial Research Center for Basic Biological Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, TaiKang Center for Life and Medical Sciences, RNA Institute, Wuhan University, Wuhan, China.

Tumour progression depends on the bidirectional interactions between cancer and stroma in the heterogeneous tumour microenvironment (TME) partially through extracellular vesicles (EVs). However, the secretary mechanism and biological effect of cancer cell derived EVs on tumour survival under starvation is poorly defined. Here, we identify cancer cells selectively secrete miR-33a with the assistance of aconitase 1 (ACO1), an iron-responsive RNA binding protein, under glucose starvation and lower iron level, which affiliates the binding capability of miR-33a and ACO1.

View Article and Find Full Text PDF