Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Zirconium alginate/poly(-isopropyl acrylamide) hydrogel beads with a semi-interpenetrating network (ZA/PNIPAM) were prepared by using the ionic crosslinking and radical polymerization method and investigated for phosphate removal from aqueous solutions. The effects on the adsorption performance of hydrogel beads, including initial pH, adsorbent dose, initial phosphate concentration, and co-existing anions, were evaluated systematically. Results showed that the ZA/PNIPAM could exhibit a maximum uptake capacity of phosphate at pH 2.The uptake capacity of the adsorbent increased with a decrease in the dose or an increase in the initial phosphate concentration. The presence of SO had a more negative effect on phosphate removal compared to Cl and NO. The kinetics fitted a pseudo-second-order model and intraparticle diffusion model, suggesting the adsorption rate was mainly controlled by surface adsorption and diffusion into the interior of the hydrogel beads. The isotherm data could be described by the Freundlich model, indicating that the adsorption process was heterogeneous multilayer adsorption. The studies of FTIR, XPS, and zero point of charge with relevant adsorption data revealed that the phosphate adsorption mechanisms could be electrostatic attraction (physical adsorption) and ligand exchange reactions (chemical adsorption). After four cycles of regeneration, ZA/PNIPAM exhibited a stable uptake capacity, indicating favorable reusability.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201711071DOI Listing

Publication Analysis

Top Keywords

hydrogel beads
16
uptake capacity
12
adsorption
9
zirconium alginate/poly-isopropyl
8
alginate/poly-isopropyl acrylamide
8
acrylamide hydrogel
8
beads semi-interpenetrating
8
phosphate removal
8
initial phosphate
8
phosphate concentration
8

Similar Publications

The aim of this study was to examine the potential antioxidant activity of curcumin in therapeutic and preventive condition and its potential role as adjuvant to conventional drug methotrexate in treatment of rheumatoid arthritis (RA). The study included 104 female Wistar albino rats, 6 weeks old, body weight of 200-250 g, which were divided into 8 groups (n=13 in each group): 1. CTRL: negative control, 2.

View Article and Find Full Text PDF

Introduction: We report a reproducible and sustainable catalytic system based on copper ion-crosslinked alginate hydrogels for the synthesis of 1,2,3-triazoles via aqueous 1,3-dipolar cycloaddition at room temperature. The catalyst, derived from a biodegradable matrix, is prepared through a simple, energy-efficient method and operates under mild, eco-friendly conditions.

Methods: Copper(II)-alginate hydrogels were prepared by ionic crosslinking.

View Article and Find Full Text PDF

A metal-ion-free method was developed to prepare κ-carrageenan/cellulose hydrogel beads for efficient cationic dye removal. The beads were fabricated using a mixture of 1-ethyl-3-methylimidazolium acetate and N,N-dimethylformamide as the solvent system, followed by aqueous ethanol-induced phase separation. This process eliminated the need for metal-ion crosslinkers, which typically neutralize anionic sulfate groups in κ-carrageenan, thereby preserving a high density of accessible binding sites.

View Article and Find Full Text PDF

Sulphate-modified chitosan hydrogel beads a recyclable bio-adsorbent for Cu(II): Experimental and theoretical studies toward nitrogen-/oxygen-donor selective binding and 1:1 complexation.

Int J Biol Macromol

August 2025

Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post-Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India.

This study was designed to develop a chemically modified chitosan-based sustainable adsorption system for soluble metal pollutants. Here, chitosan hydrogel beads modified with sulphate-sulphuric acid presented a high adsorption capacity toward copper ions and higher reusability due to enhanced low pH tolerance. Though the adsorption process was independent of incubation temperature, it varied with the pH of solution.

View Article and Find Full Text PDF

Preparation and mechanism of Lactobacillus plantarum and curcumin co-encapsulated in alginate-gelatin hydrogel beads.

Food Chem

August 2025

School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China; Key Laboratory for Food Microbial Technology of Zhejiang Province, School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, China. Electronic address:

Lactobacillus plantarum (LP) and curcumin (CUR) were co-encapsulated in sodium alginate-Lactobacillus plantarum-curcumin-gelatin (ALG-LP-CUR-GE) hydrogel beads to evaluate the synergistic function of probiotics and prebiotics. The encapsulation efficiency of LP and CUR peaked at 84.6 % and 94.

View Article and Find Full Text PDF