[Modeled Deposition of Fine Particles in Human Airway in Northern Suburb of Nanjing].

Huan Jing Ke Xue

Key Laboratory of Meteorological Disaster, Ministry of Education, Joint International Research Laboratory of Climate and Environment Change, Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Key Laboratory for Aerosol-Cloud-Precipitation of China Meteorological

Published: May 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The particles number concentrations were determined by Wide-range Particle Spectrometer (WPS) in northern suburb of Nanjing in January and April 2015. The information of size distributions was applied in the multiple-path particle dosimetry model (MPPD) v.3.04 to quantify deposition fractions (DF) and number concentration (NC) depositions of fine particles in different regions of human airway, at different air quality levels, at rest and exercise. DF of nucleation mode and Aitken mode at rest and exercise were similar, while DF of accumulation mode at exercise was 2.49 times of that at rest. DF of nucleation mode and Aitken mode in pulmonary (PUL) was the highest, about 48.17% of total deposition fractions (TDF) at rest and 54.23% of TDF at exercise. DF of accumulation mode in head was the highest, about 41.23% of TDF at rest and 80.47% of TDF at exercise. The particle NC deposition in human airway in winter was lower than that in spring, and the total NC deposition in 3 regions was in the order of PUL > tracheobronchial(TB) > head. Compared with resting, nucleation mode deposition in PUL and accumulation mode deposition in TB and head increased at exercise. The worse the air quality, the higher the deposition growth rate of exercising to resting in head. DF difference among regions was mainly due to the different physiological parameters, while NC deposition difference was mainly due to the different particle NC in the local environment.

Download full-text PDF

Source
http://dx.doi.org/10.13227/j.hjkx.201610040DOI Listing

Publication Analysis

Top Keywords

human airway
12
nucleation mode
12
accumulation mode
12
fine particles
8
northern suburb
8
deposition
8
deposition fractions
8
air quality
8
rest exercise
8
mode
8

Similar Publications

A soft robotic device for rapid and self-guided intubation.

Sci Transl Med

September 2025

Department of Mechanical Engineering, University of California, Santa Barbara, Santa Barbara, CA 93106, USA.

Endotracheal intubation is a critical medical procedure for protecting a patient's airway. Current intubation technology requires extensive anatomical knowledge, training, technical skill, and a clear view of the glottic opening. However, all of these may be limited during emergency care for trauma and cardiac arrest outside the hospital, where first-pass failure is nearly 35%.

View Article and Find Full Text PDF

Introduction: It is well known that Obstructive Sleep Apnea (OSA) is a complex disease characterized by an Upper Airway (UA) collapse during sleep, with potential consequences on ENT districts. Recent evidence suggests a possible association with Eustachian Tube Dysfunction (ETD). However, the potential effects of both surgical and non-surgical therapeutic strategies on ET function remain poorly explored in the current literature.

View Article and Find Full Text PDF

Mean Airway Pressure-An Informative but Overlooked Indicator of Mechanical Power.

Crit Care Explor

September 2025

Division of Pulmonary, Allergy, Critical Care, and Sleep, University of Minnesota, Minneapolis, MN.

Mean airway pressure, a monitored variable continuously available on the modern ventilator, is the pressure measured at the airway opening averaged over the time needed to complete the entire respiratory cycle. Mean airway pressure is well recognized to connect three key physiologic processes in mechanical ventilation: physical stretch, cardiovascular dynamics, and pulmonary gas exchange. Although other parameters currently employed in adults to determine "safe" ventilation are undoubtedly valuable for daily practice, all have limitations for continuous monitoring of ventilation hazard.

View Article and Find Full Text PDF

Chronic Obstructive Pulmonary Disease (COPD) is a prevalent chronic respiratory disorder characterized by airway inflammation and irreversible airflow limitation. Its marked heterogeneity and complexity pose significant challenges to traditional clinical assessments in terms of prognostic prediction and personalized management. In recent years, the exploration of biomarkers has opened new avenues for the precise evaluation of COPD, particularly through multi-biomarker prediction models and integrative multimodal data strategies, which have substantially improved the accuracy and reliability of prognostic assessments.

View Article and Find Full Text PDF

Asthma is one of the most prevalent chronic respiratory illnesses, significantly impacting patients through shortness of breath and even death. Acute exacerbations are usually controlled with a short-acting beta agonist, such as an albuterol inhaler, as well as long-acting agents to prevent the occurrence of exacerbations and status asthmaticus. Status asthmaticus is an emergent episode of asthma that is refractory to standard treatment.

View Article and Find Full Text PDF