98%
921
2 minutes
20
A novel type of graphene-like nanoparticle, synthesized by oxidation and unfolding of C buckminsterfullerene fullerene, showed multiple and reproducible sensitivity to Cu, Pb, Cd, and As(III) through different degrees of fluorescence quenching or, in the case of Cd, through a remarkable fluorescence enhancement. Most importantly, only for Cu and Pb, the fluorescence intensity variations came with distinct modifications of the optical absorption spectrum. Time-resolved fluorescence study confirmed that the common origin of these diverse behaviors lies in complexation of the metal ions by fullerene-derived carbon layers, even though further studies are required for a complete explanation of the involved processes. Nonetheless, the different response of fluorescence and optical absorbance towards distinct cationic species makes it possible to discriminate between the presence of Cu, Pb, Cd, and As(III), through two simple optical measurements. To this end, the use of a three-dimensional calibration plot is discussed. This property makes fullerene-derived nanoparticles a promising material in view of the implementation of a selective, colorimetric/fluorescent detection system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5982591 | PMC |
http://dx.doi.org/10.3390/s18051496 | DOI Listing |
Inorg Chem
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130021, P. R. China.
The CO cycloaddition route is an effective way to achieve efficient conversion and utilization of CO. Zeolites with diverse topologies and tunable acidic sites can efficiently promote the cycloaddition reaction of CO with epoxides. The exchangeable cations in zeolites have a great influence on the performance of the CO cycloaddition, but there are few studies on it.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
State Key Laboratory of Advanced Technology for Materials Synthesis and Processing & State Key Laboratory of Silicate Materials for Architectures & School of Chemistry, Chemical Engineering and Life Sciences & School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070
Photocatalytic seawater splitting (PSWS), which utilizes abundant solar and ocean resources, is one of the most promising technologies for sustainable hydrogen production. However, the complex composition of seawater significantly limits the durability and activity of photocatalysts. In this review, we first identify the primary factors that contribute to photocatalyst deactivation during PSWS, including chloride induced corrosion and loss of active sites, and light shielding caused by precipitation of metal cation salts.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Electrochemical Power Sources of Hubei Province, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
Hybrid artificial layer based on inorganic/polymer composite endows superior toughness and mechanical strength, which can achieve high stability of lithium metal anode. However, the large particle size and uneven distribution of inorganic fillers hinder the uniform flow of lithium ions across the membrane, making it difficult to achieve smooth lithium metal deposition/stripping. In this work, a chemical lithiation-induced defluorination strategy is proposed to engineer poly(vinylidene difluoride) (PVDF)-based artificial layers, enabling in situ incorporation of highly dispersed LiF nanofiller within the polymer matrix and precise control over the LiF content.
View Article and Find Full Text PDFJ Agric Food Chem
September 2025
Key Laboratory of Geriatric Nutrition and Health, Beijing Technology and Business University, Haidian 100080, China.
Metal ions play a vital role in the health of the modern human body, but deficiencies in mineral elements have created health risks worldwide. However, mineral supplements currently available on the market are very limited due to poor solubility, low bioavailability, and the possibility of adverse effects on the gastrointestinal tract. In contrast, protein-derived metal-chelating peptides have received a lot of attention because of their stability, safety, and very high bioavailability.
View Article and Find Full Text PDFSmall
September 2025
Department of Chemistry, Jadavpur University, Kolkata, 700032, India.
The design of a rare combination of interpenetrated and catenated 3D+2D→3D MOF {[Cd(dim)(dht)(HO)](Sol)} (1), with a unique network and extreme pH stability, has been developed for exceptional ionic conduction across a wide range of temperature and humidity conditions. The bare pore derivative of 1 (1') features remarkable structural flexibility and large pores accessible to encapsulate molecules such as NH, HCl, and KOH, enabling it to function as an efficient conductor for both proton and hydroxide ions. 1' demonstrates substantial thermal-influenced proton conductivity of 4.
View Article and Find Full Text PDF