98%
921
2 minutes
20
The root growth of most crop plants is inhibited by soil salinity. Roots respond by modulating metabolism, gene expression and protein activity, which results in changes in cell wall composition, transport processes, cell size and shape, and root architecture. Here, we focus on the effects of salt stress on cell wall modifying enzymes, cellulose microfibril orientation and non-cellulosic polysaccharide deposition in root elongation zones, as important determinants of inhibition of root elongation, and highlight cell wall changes linked to tolerance to salt stressed and water limited roots. Salt stress induces changes in the wall composition of specific root cell types, including the increased deposition of lignin and suberin in endodermal and exodermal cells. These changes can benefit the plant by preventing water loss and altering ion transport pathways. We suggest that binding of Na ions to cell wall components might influence the passage of Na and that Na can influence the binding of other ions and hinder the function of pectin during cell growth. Naturally occurring differences in cell wall structure may provide new resources for breeding crops that are more salt tolerant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plantsci.2017.12.012 | DOI Listing |
Int J Biol Macromol
September 2025
Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab, Alexandria, 21934, Egypt. Electronic address:
The growing demand for sustainable agriculture imposes innovative biocontrol strategies to mitigate phytopathogen threats while reducing dependence on chemical pesticides. This review explores the current knowledge on enzyme-based biocontrol, focusing on hydrolytic enzymes (e.g.
View Article and Find Full Text PDFInt J Biol Macromol
September 2025
Department of Biomedical Science, Acharya Narendra Dev College, University of Delhi, Govindpuri, Kalkaji, 110019, New Delhi, India. Electronic address:
Mycobacteriophage-encoded LysinB enzymes target mycolyl ester linkages in mycolyl-arabinogalactan-peptidoglycan of mycobacterium hosts and generally exhibit a globular architecture. Here, we present the structural and functional characterization of a novel Mycobacterium fortuitum prophage-encoded modular LysinB (LysinB_MF), which contains the α/β hydrolase domain and a distinct peptidoglycan-binding domain (PGBD). The enzyme's active site features the conserved Ser-Asp-His catalytic triad common to esterases and forms a funnel-like topology.
View Article and Find Full Text PDFBioorg Med Chem
September 2025
Pharmaceutical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo 11566, Egypt. Electronic address:
With the continued upsurge of antibiotic resistance and reduced susceptibility to almost all frontline antibiotics, there is a pressing need for the development of new, effective, and safe alternatives. In this study, a scaffold-hopping strategy was utilized to develop a novel class of penicillin-binding protein 2a (PBP2a) inhibitors, centered around a 4H-chromen-4-one core structure. These newly designed compounds demonstrated strong antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA) and other drug-resistant gram-positive pathogens.
View Article and Find Full Text PDFPlant Cell Rep
September 2025
College of Horticulture, Fujian Agriculture and Forestry University, Fu'zhou, 350002, People's Republic of China.
GA participates in FR light-induced internode elongation of cucumber by regulating the expression of genes/proteins related to aquaporins, expansins, cell wall biosynthesis, hormone metabolism, and signal transduction. This study investigated the effects of the interaction between far-red (FR) light and gibberellin (GA) on the internode elongation of cucumber (Cucumis sativus L. 'Zhongnong No.
View Article and Find Full Text PDFPlant Commun
September 2025
Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, 510650, China; College of Life Sciences, University of Chinese Academy of Sciences
Seed germination is a critical step in the life cycle of plants. The far-red/red light photoreceptor phytochrome B (phyB) plays a dominant role in promoting seed germination, mainly by modulating the metabolism of gibberellin (GA) and abscisic acid (ABA), although the underlying mechanism remains poorly understood. In this study, we identified BREVIPEDICELLUS (BP)/KNAT1, a KNOX transcription factor that acted downstream of phyB and activated light-initiated seed germination in Arabidopsis thaliana.
View Article and Find Full Text PDF