98%
921
2 minutes
20
Microstructure, tribological property and corrosion resistance of orthopedic implant materials CoCrW-3 wt.% Cu fabricated by selective laser melting (SLM) process were systematically investigated with CoCrW as control. Equaxied γ-phase together with the inside {111} < 112 > type twin and platelet ε-phase was found in both the Cu-bearing and Cu-free alloys. Compared to the Cu-free alloy, the introduction of 3 wt.% Cu significantly increased the volume fraction of the ε-phase. In both alloys, the hardness of ε-phase zone was rather higher (~4 times) than that of γ-phase zone. The wear factor of 3 wt.% Cu-bearing alloy possessed smaller wear factor, although it had higher friction coefficient compared with Cu-free alloys. The ε-phase in the CoCr alloy would account for reducing both abrasive and fatigue wear. Moreover, the Cu-bearing alloy presented relatively higher corrosion potential E and lower corrosion current density I compared to the Cu-free alloy. Accordingly, 3 wt.% Cu addition plays a key role in enhancing the wear resistance and corrosion resistance of CoCrW alloys, which indicates that the SLM CoCrW-3Cu alloy is a promising personalized alternative for traditional biomedical implant materials.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s10856-018-6043-7 | DOI Listing |
Environ Sci Technol
September 2025
MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
Sulfidized zero-valent iron (S-ZVI) holds promise in the remediation of chlorinated hydrocarbons. However, S-ZVI is susceptible to corrosion in aquifers with elevated dissolved oxygen (DO) levels. This study demonstrates, for the first time, that a trade-off between the passivation and oxidative corrosion of aged S-ZVI can be achieved in the presence of silicate to promote its dechlorination performance on trichloroethylene.
View Article and Find Full Text PDFNanoscale
September 2025
School of Mechanical Engineering, Shandong University of Technology, Zibo 255000, China.
Metal matrix composites are widely employed in aerospace and marine engineering due to their excellent mechanical properties and chemical stability. However, their surfaces remain vulnerable to corrosion, icing, and mechanical wear, severely compromising long-term reliability in harsh environments. Inspired by natural superhydrophobic surfaces such as lotus leaves, functional interfaces with high water repellency and interfacial stability can be engineered through the synergistic design of hierarchical micro/nanostructures and low-surface-energy chemical modifications.
View Article and Find Full Text PDFClin Cosmet Investig Dent
August 2025
Department of Periodontology, Faculty of Dentistry, Universitas Padjadjaran, Sumedang, West Java, Indonesia.
Titanium is widely used for dental implant abutments due to its mechanical strength, biocompatibility, and corrosion resistance; however, its gray coloration can compromise esthetic outcomes, particularly in patients with thin or translucent gingival biotypes. Anodization, a surface modification technique altering the titanium oxide layer, has been proposed to improve soft tissue aesthetics by producing abutments with warmer tones (eg, pink or gold) that harmonize with the surrounding gingiva. This systematic review aimed to evaluate the clinical and aesthetic outcomes of anodized titanium abutments compared to non-anodized titanium and other materials, with a focus on peri-implant soft tissue health and visual integration.
View Article and Find Full Text PDFRegen Biomater
August 2025
Shi-Changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China.
The most significant challenge facing magnesium alloy stents is their ability to withstand complex deformation during their application. To gain a deeper understanding of the impact of stent deformation on the protective capabilities of the coating, this paper presents an amplified stent deformation model. The models were coated with either a low elongation material-Poly(D, L-lactide) (PDLLA) or a high elongation material-Poly(butylene adipate-co-terephthalate) (PBAT), followed by the application of a rapamycin-loaded PLGA as drug-eluting layer.
View Article and Find Full Text PDFFront Bioeng Biotechnol
August 2025
Institute of Stomatology and Laboratory of Oral Tissue Engineering, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.
Introduction: Guided bone regeneration (GBR) serves as a critical technique in dental implantology, relying heavily on barrier membranes for successful alveolar bone augmentation. Titanium mesh, widely utilized in GBR procedures, faces a high exposure rate that leads to infections and compromised clinical outcomes. While 3D-printed personalized meshes have reduced exposure rates, infection risks persist, necessitating the development of bioactive solutions.
View Article and Find Full Text PDF