98%
921
2 minutes
20
Introduction: Walking instability is a contributor to falls and other undesired changes in walking performance. We investigated the effect of split-belt treadmill based perturbations on dynamic stability. Furthermore, we examined the relationships for dynamic stability and symmetry during unperturbed and perturbed walking.
Method: Twenty healthy young adults completed unperturbed and perturbed walking conditions on a split-belt treadmill. The continuous perturbation involved moving the parallel belts at unequal speeds (1.5 m/s: 0.5 m/s). Margins of stability (MoS) and step length symmetry (SYM) were assessed.
Results: Stability and symmetry measures each decreased at the onset of the split walking perturbation. Only anterior-posterior (AP) MoS and SYM exhibited adaptive changes. Associations were found primarily for AP MoS with immediate changes in SYM at the onset of split walking, and over the duration of the split walking condition.
Discussion: Our findings suggest walking strategies were adapted to maintain dynamic stability when faced with a continuous perturbation. Additionally, dynamic stability was associated with symmetry during perturbed walking.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5960610 | PMC |
http://dx.doi.org/10.1016/j.gaitpost.2018.03.006 | DOI Listing |
Acta Neuropathol Commun
September 2025
Department of Biomedical and Clinical Sciences and Department of Clinical Pathology, Linköping University, 58185, Linköping, Sweden.
Disruptions in synaptic transmission and plasticity are early hallmarks of Alzheimer's disease (AD). Endosomal trafficking, mediated by the retromer complex, is essential for intracellular protein sorting, including the regulation of amyloid precursor protein (APP) processing. The VPS35 subunit, a key cargo-recognition component of the retromer, has been implicated in neurodegenerative diseases, with mutations such as L625P linked to early-onset AD.
View Article and Find Full Text PDFOecologia
September 2025
Department of Entomology and Plant Pathology, Auburn University, 301 Funchess Hall, Auburn, AL, 36849, USA.
Understanding changes to local communities brought about by biological invasions is important for conserving biodiversity and maintaining environmental stability. Scale insects (Hemiptera: Coccoidea) are a diverse group of insects well known for their invasion potential and ability to modify local abundance of multiple insect groups. Here, we tested how the presence of crape myrtle bark scale (Acanthococcus lagerstroemiae, CMBS), an invasive felt scale species, seasonally impacted local insect abundance, biodiversity, and community structure on crape myrtle trees.
View Article and Find Full Text PDFMol Psychiatry
September 2025
Center for Gene Regulation in Health and Disease, Cleveland State University, Cleveland, OH, 44115, USA.
Dysregulated spine morphology is a common feature in the pathology of many neurodevelopmental and neuropsychiatric disorders. Overabundant immature dendritic spines in the hippocampus are causally related to cognitive deficits of Fragile X syndrome (FXS), the most common form of heritable intellectual disability. Recent findings from us and others indicate autophagy plays important roles in synaptic stability and morphology, and autophagy is downregulated in FXS neurons.
View Article and Find Full Text PDFActa Pharmacol Sin
September 2025
Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
Non-small cell lung cancer (NSCLC) is an aggressive malignancy with a poor prognosis. Abnormal expression of focal adhesion kinase (FAK) is closely linked to NSCLC progression, highlighting the need for effective FAK inhibitors in NSCLC treatment. In this study we conducted high-throughput virtual screening combined with cellular assays to identify potential FAK inhibitors for NSCLC treatment.
View Article and Find Full Text PDFLight Sci Appl
September 2025
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China.
Camouflage technology has garnered increasing attention for various applications. With the continuous advancement of detection technologies and the increasing variability of camouflage scenarios, the demand for multispectral dynamic camouflage has been steadily growing. In this work, we present a multispectral dynamic regulator based on phase-changing material vanadium dioxide (VO) that can be dynamically and functional-independently regulated for reflective color and thermal radiation.
View Article and Find Full Text PDF