Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

There is a sustained interest in developing solvents for physically dissolving cellulose, i.e., without covalent bond formation. The use of ionic liquids, ILs, has generated much interest because of their structural versatility that results in efficiency as cellulose solvents. Despite some limitations, imidazole-based ILs have received most of the scientific community's attention. The objective of the present review is to show the advantages of using quaternary ammonium electrolytes, QAEs, including salts of super bases, as solvents for cellulose dissolution, shaping, and derivatization, and as a result, increase the interest in further investigation of these important solvents. QAEs share with ILs structural versatility; many are liquids at room temperature or are soluble in water and molecular solvents (MSs), in particular dimethyl sulfoxide. In this review we first give a historical background on the use of QAEs in cellulose chemistry, and then discuss the common, relatively simple strategies for their synthesis. We discuss the mechanism of cellulose dissolution by QAEs, neat or as solutions in MSs and water, with emphasis on the relevance to cellulose dissolution efficiency of the charge and structure of the cation and. We then discuss the use of cellulose solutions in these solvents for its derivatization under homogeneous and heterogeneous conditions. The products of interest are cellulose esters and ethers; our emphasis is on the role of solvent and possible side reactions. The final part is concerned with the use of cellulose dopes in these solvents for its shaping as fibers, a field with potential commercial application.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6017797PMC
http://dx.doi.org/10.3390/molecules23030511DOI Listing

Publication Analysis

Top Keywords

cellulose dissolution
12
cellulose
10
dissolution shaping
8
shaping derivatization
8
quaternary ammonium
8
ammonium electrolytes
8
water molecular
8
solvents
8
molecular solvents
8
structural versatility
8

Similar Publications

Emodin is a natural anthraquinone derivative with poor water solubility, which limits its antibacterial activity. The purpose of this work is to investigate the antibacterial activity of emodin nanocrystals (EMD-NCs) with different particle sizes against Staphylococcus aureus (S. aureus) and explores its underlying mechanisms.

View Article and Find Full Text PDF

Objective: This research aimed to investigate the compatibility of the Ketoconazole-Adipic Acid (KTZ-AA) co-crystal, which exhibits an improved dissolution profile over pure Ketoconazole, with various solid pharmaceutical excipients, as well as its in silico antifungal potential.

Methods: Binary physical mixtures (1:1 w/w) of KTZ-AA co-crystal and excipients were analyzed using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FT-IR), and powder X-ray diffraction (PXRD). The molecular docking study targeting the sterol 14α-demethylase (CYP51) enzyme of the pathogenic yeast Candida albicans was performed.

View Article and Find Full Text PDF

Hot-melt extrusion (HME) has gained prominence for the manufacture of sustained-release oral dosage forms, yet the application of wax-based matrices and their resilience to alcohol-induced dose dumping (AIDD) remains underexplored. This study aimed to develop and characterise wax-based sustained-release felodipine formulations, with a particular focus on excipient functionality and robustness against AIDD. Felodipine sustained-release formulations were prepared via HME using Syncrowax HGLC as a thermally processable wax matrix.

View Article and Find Full Text PDF

Hydroxypropylmethylcellulose acetyl succinate (HPMC-AS) is the most widely used polymer in commercially available amorphous solid dispersions (ASDs), due to its ability to aid dissolution of poorly soluble drugs while impeding drug recrystallization. Nuclear magnetic resonance (NMR) spectroscopy is a well-suited approach to provide structural information on amorphous solids and access intermolecular interactions in multicomponent materials such as ASDs. The C spectral assignments for HPMC-AS differ in the literature, largely due to the significant structural complexity of this polymer, but are critical to identify drug-polymer interactions in ASDs containing HPMC-AS.

View Article and Find Full Text PDF

Conquering Shuttle Effect and Dendrites Synergistically: A Zwitterionic Bacterial Cellulose Hydrogel Electrolyte for Ultralong-Lifespan Zn-I Batteries.

Small

August 2025

CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, 230027, China.

Rechargeable aqueous zinc-iodine batteries (ZIBs) hold significant promise for energy storage. Their advancement, however, faces critical challenges: soluble polyiodide shuttling and rampant Zn dendrite growth. This work introduces a polyampholyte bacterial cellulose hydrogel electrolyte (SBC) engineered to overcome these limitations.

View Article and Find Full Text PDF