Show me the way: rust effector targets in heterologous plant systems.

Curr Opin Microbiol

INRA/Université de Lorraine, UMR 1136 Interactions Arbres/Microorganismes, INRA Centre Grand Est-Nancy, Champenoux, France. Electronic address:

Published: December 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

For years, the study of rust fungal effectors has been impeded by the lack of molecular genetic tools in rust pathosystems. The recent use of heterologous plants to perform effector screens (effectoromics)-including effector localisation (cellular targets) and protein interactors (molecular targets) in plant cells-has changed the game. These screens revealed that many candidate effectors from various rust fungi target specific plant cell compartments, including chloroplasts, and associate with specific plant protein complexes. Such information represents unparalleled opportunities to understand how effectors sustain extreme parasitic interactions and obligate biotrophy. Despite their limitations, we here portray how the use of heterologous expression systems has been essential for gaining new insight into rust effectors.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mib.2018.01.016DOI Listing

Publication Analysis

Top Keywords

specific plant
8
rust
5
rust effector
4
effector targets
4
targets heterologous
4
plant
4
heterologous plant
4
plant systems
4
systems years
4
years study
4

Similar Publications

Multiyear Drought Strengthens Positive and Negative Functional Diversity Effects on Tree Growth Response.

Glob Chang Biol

September 2025

Chair of Silviculture, Faculty of Environment and Natural Resources, Institute of Forest Sciences, University of Freiburg, Freiburg, Germany.

Mixed-species forests are proposed to enhance tree resistance and resilience to drought. However, growing evidence shows that tree species richness does not consistently improve tree growth responses to drought. The underlying mechanisms remain uncertain, especially under unprecedented multiyear droughts.

View Article and Find Full Text PDF

Ultrasonic pulse repetition rates triggering escape responses of a moth pest.

Pest Manag Sci

September 2025

Laboratory of Applied Entomology, Graduate School of Horticulture, Chiba University, Chiba, Japan.

Background: The coevolutionary arms race between echolocating bats and tympanate moths has driven the evolution of ultrasound-mediated escape behaviors in moths. Bat-emitted ultrasonic pulses vary in sound intensity and temporal structure, with pulse repetition rate (PRR) which intrinsically encode critical information about predation risk, i.e.

View Article and Find Full Text PDF

Plants, Pills, and the Brain: Exploring Phytochemicals and Neurological Medicines.

Int J Plant Anim Environ Sci

August 2025

Department of Translational Research, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.

Neurological disorders, such as Alzheimer's disease, Parkinson's disease, epilepsy, spinal cord injuries, and traumatic brain injuries, represent substantial global health challenges due to their chronic and often progressive nature. While allopathic medicine offers a range of pharmacological interventions aimed at managing symptoms and mitigating disease progression, it is accompanied by limitations, including adverse side effects, the development of drug resistance, and incomplete efficacy. In parallel, phytochemicals-bioactive compounds derived from plants-are receiving increased attention for their potential neuroprotective, antioxidant, and anti-inflammatory properties.

View Article and Find Full Text PDF

flavones (PRFs), bioactive components derived from the plant, exhibit anti-inflammatory and anti-tumor properties. However, their therapeutic potential for bladder cancer remains poorly understood. The present study aimed to investigate the anti-tumor effects and molecular mechanisms underlying the effects of PRF on human bladder cancer T24 cells.

View Article and Find Full Text PDF

Thymol is a major monoterpene compound from plants. Thymol exhibits antifungal, antioxidant, and anti-inflammatory properties. Over the past few years, extensive research has underscored the pivotal role of thymol in delaying postharvest senescence in fruits and vegetables, suppressing fungal growth in meat products, and enhancing the shelf life of meat and processed foods.

View Article and Find Full Text PDF