Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

This work describes the first enantioselective 1,6-additions of azlactones to para-quinone methides. In the presence of a chiral phosphoric acid, 1,6-adducts were obtained in high yields (up to 96%) with excellent diastereoselectivities and enantioselectivities (all >20:1 diastereoselectivity ratio (dr), up to 99% enantiomeric excess (ee)). Importantly, the method offers a facile synthetic approach, not only to enantiopure α,α-disubstituted α-amino acid esters, but also to unnatural enantioenriched β,β-diaryl-α-amino acid esters bearing adjacent tertiary and quaternary stereogenic centers.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.orglett.8b00072DOI Listing

Publication Analysis

Top Keywords

acid esters
12
azlactones para-quinone
8
para-quinone methides
8
ββ-diaryl-α-amino acid
8
enantioselective organocatalytic
4
organocatalytic 16-addition
4
16-addition azlactones
4
methides access
4
access αα-disubstituted
4
αα-disubstituted ββ-diaryl-α-amino
4

Similar Publications

Maintaining safe and potent drug levels in vivo is challenging. Multidomain peptides assemble into supramolecular hydrogels with a well-defined, highly porous nanostructure that makes them attractive for drug delivery. However, their ability to extend release is typically limited by rapid drug diffusion.

View Article and Find Full Text PDF

The growing demand for healthy Tartary buckwheat-based foods has sparked interest in fermentation as a processing technique to enhance food quality and bioactivity. This study investigated the impact of solid-state fermentation of black Tartary buckwheat (BTB) with Monascus purpureus and Eurotium cristatum PW-1 on its quality, biochemical properties, and hypolipidemic potential, using metabolomics, bioinformatics, network pharmacology, and invivo zebrafish models. Fermentation significantly increased total amino acids, γ-aminobutyric acid, and aromatic volatile compounds such as alcohols, esters, terpenes, and terpenoids, enhancing the flavor profile.

View Article and Find Full Text PDF

Valproic acid-based self-assembling nanoparticle prodrugs prevent skeletal muscle loss in cancer cachexia.

Colloids Surf B Biointerfaces

September 2025

Department of Materials Science, Graduate School of Pure and Applied Sciences, University of Tsukuba, Tennoudai, Tsukuba, Ibaraki 305-8573, Japan; Center for Applied Nanomedicine, National Cheng Kung University, No.1, University Road, East District, Tainan 701, Taiwan. Electronic address: y-nagasaki

Cancer cachexia is a multifactorial syndrome characterized by persistent skeletal muscle loss, affecting 80 % of patients with advanced cancer and accounting for 20 % of cancer-related deaths. Despite its prevalence, effective treatment options remain limited due to the side effects and poor pharmacokinetic (PK) profiles of existing therapeutics, including valproic acid (VPA). To overcome these limitations, we developed self-assembling VPA-based nanoparticle prodrugs (abbreviated as Nano), consisting of amphiphilic block copolymers, in which VPA is covalently conjugated via ester linkages.

View Article and Find Full Text PDF

Trifluoromethylborylation of Unactivated Alkenes via an Electron Donor-Acceptor (EDA) Complex.

Org Lett

September 2025

Department of Chemistry, Indiana University, 800 East Kirkwood Avenue, Bloomington, Indiana 47405-7102, United States.

This communication describes a straightforward method for the trifluoromethylborylation of unactivated alkenes. The reaction proceeds through the formation of an electron donor-acceptor (EDA) complex between a trifluoromethylthiophenium salt and bis(catechol)diboron under broad-spectrum white-light irradiation. Due to the mild reaction conditions, the trifluoromethylborylation tolerates a wide range of functional groups, including esters, acids, alcohols, epoxides, and a variety of heterocycles.

View Article and Find Full Text PDF

Functional Metabolism of Aromatic Precursors in Hanseniaspora: A Source of Natural Bioactive Compounds.

FEMS Yeast Res

September 2025

Enology and Fermentation Biotechnology Area, Department of Science and Food Technology. Faculty of Chemistry, Universidad de la Republica. Montevideo, Uruguay.

Hanseniaspora species are among the most prevalent yeasts found on grapes and other fruits, with a growing role in wine fermentation due to their distinctive metabolic profiles. This review focuses on the functional divergence within the genus, particularly between the fast-evolving fruit clade and the slow-evolving fermentation clade. While species in the fruit clade often exhibit limited fermentation capacity with interesting enzymatic activity, members of the fermentation clade-especially H.

View Article and Find Full Text PDF