Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called 'speed breeding', which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (Triticum aestivum), durum wheat (T. durum), barley (Hordeum vulgare), chickpea (Cicer arietinum) and pea (Pisum sativum), and 4 generations for canola (Brassica napus), instead of 2-3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s41477-017-0083-8DOI Listing

Publication Analysis

Top Keywords

speed breeding
16
crop breeding
8
improvement rate
8
supplemental lighting
8
crop improvement
8
breeding
6
crop
5
speed
4
breeding powerful
4
powerful tool
4

Similar Publications

Stacking desirable haplotypes across the genome to develop superior genotypes has been implemented in several crop species. A major challenge in Optimal Haplotype Selection is identifying a set of parents that collectively contain all desirable haplotypes, a complex combinatorial problem with countless possibilities. In this study, we evaluated the performance of metaheuristic search algorithms (MSAs)-genetic algorithm (GA), differential evolution (DE), particle swarm optimisation (PSO), and simulated annealing (SA) for optimising parent selection under two genotype building (GB) objectives: Optimal Haplotype Selection (OHS) and Optimal Population Value (OPV).

View Article and Find Full Text PDF

Random regression models (RRM) combined with single-step genomic best linear unbiased prediction (ssGBLUP) are widely used for genomic evaluations in dairy cattle. This study aimed to efficiently implement RRM with ssGBLUP for national dairy cattle evaluations. Data from the Czech Holstein population were used, including 30 million test-day records for milk yield across 3 lactations.

View Article and Find Full Text PDF

Wheat is the most cultivated crop worldwide, and Australia consistently ranks among the top wheat-exporting countries. Although modern technology has expanded the speed and accuracy of conventional breeding, progress is constrained by limited genetic diversity and linkage drag, with new wheat varieties often taking 8-12 years to reach the market. Biotech methods involving the transformation of foreign DNA into genomes [genetic modification (GM)], or editing of native DNA [genome editing (GEd)], provide novel opportunities to efficiently improve traits alongside conventional breeding.

View Article and Find Full Text PDF

Introduction: This study examined the effects of pot size, soil type, fertilizer x dose interactions, and foliar fertilizer application on wheat growth under speed breeding conditions.

Methods: The study was conducted in 2020 in a semi-controlled greenhouse at Dicle University, Diyarbakır, Türkiye, with a 22-hour photoperiod, 22/17°C day/ night temperature, 70% humidity, and 316.15 µmol/m/s light intensity using a mix of white, red, yellow, and purple LED lamps.

View Article and Find Full Text PDF

Equine herpesvirus 1 (EHV-1) is one of the most dangerous viral diseases affecting ungulates, and is characterized by a wide range of clinical manifestations in horses, including rhinopneumonia, abortion, neonatal death, and myeloencephalopathy. It is well known for causing mass abortions in mares and respiratory diseases in young animals. Once introduced into a horse breeding farm of any type, EHV-1 tends to establish as a persistent infection.

View Article and Find Full Text PDF