Lattice-geometry effects in garnet solid electrolytes: a lattice-gas Monte Carlo simulation study.

R Soc Open Sci

Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.

Published: November 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ionic transport in solid electrolytes can often be approximated as ions performing a sequence of hops between distinct lattice sites. If these hops are uncorrelated, quantitative relationships can be derived that connect microscopic hopping rates to macroscopic transport coefficients; i.e. tracer diffusion coefficients and ionic conductivities. In real materials, hops are uncorrelated only in the dilute limit. At non-dilute concentrations, the relationships between hopping frequency, diffusion coefficient and ionic conductivity deviate from the random walk case, with this deviation quantified by single-particle and collective correlation factors, and , respectively. These factors vary between materials, and depend on the concentration of mobile particles, the nature of the interactions, and the host lattice geometry. Here, we study these correlation effects for the garnet lattice using lattice-gas Monte Carlo simulations. We find that, for non-interacting particles (volume exclusion only), single-particle correlation effects are more significant than for any previously studied three-dimensional lattice. This is attributed to the presence of two-coordinate lattice sites, which causes correlation effects intermediate between typical three-dimensional and one-dimensional lattices. Including nearest-neighbour repulsion and on-site energies produces more complex single-particle correlations and introduces collective correlations. We predict particularly strong correlation effects at =3 (from site energies) and =6 (from nearest-neighbour repulsion), where =9 corresponds to a fully occupied lithium sublattice. Both effects are consequences of ordering of the mobile particles. Using these simulation data, we consider tuning the mobile-ion stoichiometry to maximize the ionic conductivity, and show that the 'optimal' composition is highly sensitive to the precise nature and strength of the microscopic interactions. Finally, we discuss the practical implications of these results in the context of lithium garnets and other solid electrolytes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717647PMC
http://dx.doi.org/10.1098/rsos.170824DOI Listing

Publication Analysis

Top Keywords

correlation effects
16
solid electrolytes
12
effects garnet
8
lattice-gas monte
8
monte carlo
8
lattice sites
8
hops uncorrelated
8
ionic conductivity
8
mobile particles
8
nearest-neighbour repulsion
8

Similar Publications

BackgroundSpinal cord injury is a complex condition affecting millions globally, often requiring extensive rehabilitation. YouTube is increasingly utilized by spinal cord injury-patients and caregivers for rehabilitation information, despite potential misinformation risks. However, few studies have assessed the quality of spinal cord injury -related content on this platform.

View Article and Find Full Text PDF

The emergence of antimicrobial resistance (AMR) Escherichia coli in poultry farming is a growing global public health concern, particularly in Bangladesh, where the use of antibiotics remains largely unregulated. This study aimed to determine the prevalence and AMR patterns of E. coli isolated from broiler chickens in Sylhet district of Bangladesh and to investigate the network of coexisting resistance traits among the isolates.

View Article and Find Full Text PDF

Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by persistent inflammation and is often associated with poor oral health. Cytokines play a central role in RA immunopathogenesis. This case-control study investigated the involvement of salivary interleukin-17A (IL-17A) and interleukin-18 (IL-18) in RA patients in relation to oral health status.

View Article and Find Full Text PDF

Purpose: To identify predictors of the 2-year best-corrected visual acuity (BCVA) after subretinal tissue plasminogen activator (tPA) injection for massive submacular hemorrhage (SMH) complicating neovascular age-related macular degeneration (nAMD).

Study Design: A prospective, observational study.

Methods: This study included consecutive eyes with massive SMH and nAMD that underwent vitrectomy with subretinal tPA injection and follow-up for 2 years.

View Article and Find Full Text PDF

Metabolic associated steatohepatitis (MASH) is a severe form of metabolic dysfunction-associated steatotic liver disease (MASLD) characterized by hepatocellular injury, inflammation, and fibrosis. Despite advances in understanding its pathophysiology, the molecular mechanisms driving MASH progression remain unclear. This study investigates the role of long non-coding RNA Linc01271 in MASLD/MASH pathogenesis, ant its involvement in the miR-149-3p/RAB35 axis and PI3K/AKT/mTOR signaling pathway.

View Article and Find Full Text PDF