98%
921
2 minutes
20
Early diagnosis of cartilage disease at a time when changes are limited to depletion of extracellular matrix components represents an important diagnostic target to reduce patient morbidity. This report is to present proof of concept for nanoparticle dependent cartilage barrier imaging in a large animal model including the use of clinical magnetic resonance imaging (MRI). Conditioned (following matrix depletion) and unconditioned porcine metacarpophalangeal cartilage was evaluated on the basis of fluorophore conjugated 30 nm and 80 nm spherical gold nanoparticle permeation and multiphoton laser scanning and bright field microscopy after autometallographic particle enhancement. Consequently, conditioned and unconditioned joints underwent MRI pre- and post-injection with 12 nm superparamagnetic iron oxide nanoparticles (SPIONs) to evaluate particle permeation in the context of matrix depletion and use of a clinical 1.5 Tesla MRI scanner. To gauge the potential pro-inflammatory effect of intra-articular nanoparticle delivery co-cultures of equine synovium and cartilage tissue were exposed to an escalating dose of SPIONs and IL-6, IL-10, IFN-γ and PGE2 were assessed in culture media. The chemotactic potential of growth media samples was subsequently assessed in transwell migration assays on isolated equine neutrophils. Results demonstrate an increase in MRI signal following conditioning of porcine joints which suggests that nanoparticle dependent compositional cartilage imaging is feasible. Tissue culture and neutrophil migration assays highlight a dose dependent inflammatory response following SPION exposure which at the imaging dose investigated was not different from controls. The preliminary safety and imaging data support the continued investigation of nanoparticle dependent compositional cartilage imaging. To our knowledge, this is the first report in using SPIONs as intra-articular MRI contrast agent for studying cartilage barrier function, which could potentially lead to a new diagnostic technique for early detection of cartilage disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5747449 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0190216 | PLOS |
ACS Chem Neurosci
September 2025
College of Pharmacy, Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21912, Republic of Korea.
Neurological disorders such as Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, Multiple Sclerosis, and Amyotrophic Lateral Sclerosis pose significant challenges for treatment. Reasons for the difficulty in finding cures for these conditions include complications in early diagnosis, progressive and irreversible neuronal damage, and the presence of the blood-brain barrier (BBB), which hinders the delivery of drugs to the affected areas of the brain. Intranasal (INL) drug administration has increasingly gained popularity among researchers for targeting neurological conditions, because of its ability to bypass the BBB.
View Article and Find Full Text PDFBiology (Basel)
August 2025
College of Animal Science and Technology, Tarim University, Alar 843300, China.
Inflammatory arthritis (IA) is a chronic condition marked by joint dysfunction and pain, posing significant challenges for effective drug delivery. This study separated leaf-derived exosome-like nanovesicles (PFE) to effectively penetrate the stratum corneum barrier. These nanovesicles and indomethacin (IND) were subsequently developed into a nanogel designed for topical drug delivery systems (PFE-IND-GEL).
View Article and Find Full Text PDFMater Today Bio
October 2025
Department of Facial Plastic and Reconstructive Surgery, Eye and ENT Hospital, Fudan University, Shanghai, China.
Cartilage defects, whether congenital or acquired, are highly prevalent in clinical practice. Tissue engineering offers a promising strategy for cartilage regeneration; however, the loss of chondrocyte phenotype during expansion remains a major barrier to the clinical translation of chondrocyte-based engineered cartilage. Emerging evidence has highlighted that alterations in chondrocyte metabolic states can profoundly impact their phenotypic stability.
View Article and Find Full Text PDFAdv Healthc Mater
September 2025
Laboratory of Advance Technologies of Materials, Ministry of Education, College of Medicine and School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China.
The absence of blood vessels and nerves in cartilage severely restricts its self-healing capacity. Meanwhile, the inherent anti-adhesive nature of articular cartilage matrix further complicates the integration of implanted scaffolds, leading to common issues such as scaffold displacement, reduced mechanical stability, impaired cell migration, and insufficient tissue regeneration. These challenges collectively render articular cartilage repair a formidable global issue.
View Article and Find Full Text PDFPharmacy (Basel)
August 2025
Independent Researcher, 11520 Cádiz, Spain.
Osteoarthritis (OA) remains a major contributor to pain and disability; however, the current management is largely reactive, focusing on symptoms rather than preventing irreversible cartilage loss. This review first examines the mechanistic foundations for pharmacological chondroprotection-illustrating how conventional agents, such as glucosamine sulfate and chondroitin sulfate, can potentially restore extracellular matrix (ECM) components, may attenuate catabolic enzyme activity, and might enhance joint lubrication-and explores the delivery challenges posed by avascular cartilage and synovial diffusion barriers. Subsequently, a practical "What-How-When" framework is introduced to guide community pharmacists in risk screening, DMOAD selection, chronotherapeutic dosing, safety monitoring, and lifestyle integration, as exemplified by the CHONDROMOVING infographic brochure designed for diverse health literacy levels.
View Article and Find Full Text PDF