A nanowire array with two types of bromoplumbate chains and high anisotropic conductance.

Dalton Trans

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.

Published: January 2018


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Crystalline nanowire arrays would create great opportunity for novel electrical application. Herein, we report a metal halide-based crystalline nanowire array, which was the first example constructed from two types of bromoplumbate anion chains. The single crystal shows high anisotropic conductivity with semiconducting transport along the c axis and an insulating feature perpendicular to the c direction.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c7dt03679eDOI Listing

Publication Analysis

Top Keywords

nanowire array
8
types bromoplumbate
8
high anisotropic
8
crystalline nanowire
8
array types
4
bromoplumbate chains
4
chains high
4
anisotropic conductance
4
conductance crystalline
4
nanowire arrays
4

Similar Publications

In this study, employing a 2D electrodeposition in situ assembly method, a high-performance HS sensor based on a p-n type CuO-CuFeO heterostructure ordered nanowire arrays was successfully fabricated on silicon substrates. Compared to CuO, CuO-CuFeO nanowire arrays exhibits an ideal interfacial barrier structure and higher initial resistance, with a response to 10 ppm of HS at room temperature (20 ± 3 °C) increased by 225 times and a response time reduced by over 2400 s. The sensor demonstrates exceptional sensitivity (LOD = 10 ppb; response = 234.

View Article and Find Full Text PDF

Near-infrared (NIR) narrowband photodetectors, featuring high sensitivity, excellent wavelength selectivity, and narrow full width at half-maximum (fwhm), enable efficient detection of specific NIR wavelengths and are widely used in optical communication, environmental monitoring, spectroscopy, and scientific research. In this study, we present a self-powered NIR photodetector based on a silicon nanowire (SiNW) array, exhibiting an ultranarrowband response centered at 1120 nm. The device employs a simple Schottky junction architecture.

View Article and Find Full Text PDF

Rapid Molten-Salt Synthesis of Phase-Controlled Mo-Doped Sulfides for Water Splitting.

Langmuir

September 2025

College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, Hubei, PR China.

Transition metal sulfides are promising electrocatalysts for water electrolysis. This work develops an innovative rapid low-temperature molten-salt template approach that enables one-step fabrication of free-standing Mo-doped sulfide nanowire arrays (Mo-NiS@NiS/NF) on nickel foam (NF) within merely 30 min, substantially reducing synthesis time compared to conventional methods. XRD and Raman analyses show that the doping of Mo makes the original NiS convert into NiS with higher catalytic activity.

View Article and Find Full Text PDF

One-dimensional photonic crystal (1D-PhC) pillar cavities allow transducing mechanical pillar vibrations to the optical domain, thereby relaxing the requirements typically associated with mechanical motion detection. In this study, we integrate these geometries into a silicon-on-insulator photonics platform and explore their optical and mechanical properties. The 1D-PhC structures consist of a linear array of high aspect ratio nanopillars with nanometer-sized diameters, designed to enhance the interaction between transverse-magnetic (TM) polarized optical fields and mechanical vibrations and to minimize optical leaking to the substrate.

View Article and Find Full Text PDF

Human action recognition (HAR) is crucial for the development of efficient computer vision, where bioinspired neuromorphic perception visual systems have emerged as a vital solution to address transmission bottlenecks across sensor-processor interfaces. However, the absence of interactions among versatile biomimicking functionalities within a single device, which was developed for specific vision tasks, restricts the computational capacity, practicality, and scalability of in-sensor vision computing. Here, we propose a bioinspired vision sensor composed of a GaN/AlN-based ultrathin quantum-disks-in-nanowires (QD-NWs) array to mimic not only Parvo cells for high-contrast vision and Magno cells for dynamic vision in the human retina but also the synergistic activity between the two cells for in-sensor vision computing.

View Article and Find Full Text PDF