Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Cardiac hypertrophy and its resultant heart failure are among the most common causes of mortality worldwide. Abnormal protein degradation, especially the impaired lysosomal degradation of large organelles and membrane proteins, is involved in the progression of cardiac hypertrophy. However, the underlying mechanisms have not been fully elucidated.

Methods: We investigated cardiac transmembrane BAX inhibitor motif containing 1 (TMBIM1) mRNA and protein expression levels in samples from patients with heart failure and mice with aortic banding (AB)-induced cardiac hypertrophy. We generated cardiac-specific knockout mice and cardiac-specific -overexpressing transgenic mice and then challenged them with AB surgery. We used microarray, confocal image, and coimmunoprecipitation analyses to identify the downstream targets of TMBIM1 in cardiac hypertrophy. / double-knockout mice were generated to investigate whether the effects of TMBIM1 on cardiac hypertrophy were Toll-like receptor 4 (TLR4) dependent. Finally, lentivirus-mediated overexpression in a monkey AB model was performed to evaluate the therapeutic potential of TMBIM1.

Results: TMBIM1 expression was significantly downregulated on hypertrophic stimuli in both human and mice heart samples. Silencing cardiac aggravated AB-induced cardiac hypertrophy. This effect was blunted by overexpression. Transcriptome profiling revealed that the TLR4 signaling pathway was disrupted dramatically by manipulation of . The effects of TMBIM1 on cardiac hypertrophy were shown to be dependent on TLR4 in double-knockout mice. Fluorescent staining indicated that TMBIM1 promoted the lysosome-mediated degradation of activated TLR4. Coimmunoprecipitation assays confirmed that TMBIM1 directly interacted with tumor susceptibility gene 101 via a PTAP motif and accelerated the formation of multivesicular bodies that delivered TLR4 to the lysosomes. Finally, lentivirus-mediated overexpression reversed AB-induced cardiac hypertrophy in monkeys.

Conclusions: TMBIM1 protects against pathological cardiac hypertrophy through promoting the lysosomal degradation of activated TLR4. Our findings reveal the central role of TMBIM1 as a multivesicular body regulator in the progression of pathological cardiac hypertrophy, as well as the role of vesicle trafficking in signaling regulation during cardiac hypertrophy. Moreover, targeting TMBIM1 could be a novel therapeutic strategy for treating cardiac hypertrophy and heart failure.

Download full-text PDF

Source
http://dx.doi.org/10.1161/CIRCULATIONAHA.117.031659DOI Listing

Publication Analysis

Top Keywords

cardiac hypertrophy
52
cardiac
15
hypertrophy
13
pathological cardiac
12
heart failure
12
ab-induced cardiac
12
tmbim1 cardiac
12
tmbim1
10
transmembrane bax
8
bax inhibitor
8

Similar Publications

Introduction: Cardiac amyloidosis is an underdiagnosed disease, and its prevalence is probably higher than previously estimated. We aimed to investigate the effect of introducing a systemic diagnostic algorithm for cardiac amyloidosis in clinical practice.

Methods: A systematic diagnostic algorithm was developed and clinically applied in two hospitals in Eastern Denmark.

View Article and Find Full Text PDF

Cardiovascular assessments in children and adolescents with hypertension are essential for detecting early signs of organ damage and guiding timely interventions. The pathophysiology of pediatric hypertension involves a complex interplay of arterial stiffness, endothelial dysfunction, metabolic disturbances, activation of the renin-angiotensin-aldosterone system, and immune dysregulation. These mechanisms collectively contribute to target organ damage, particularly in the cardiovascular system.

View Article and Find Full Text PDF

Heart failure (HF) and lung cancer (LC) often coexist, yet their shared molecular mechanisms are unclear. We analyzed transcriptome data from the NCBI Gene Expression Omnibus (GEO) database (GSE141910, GSE57338) to identify 346 HF‑related differentially expressed genes (DEGs), then combined weighted gene co-expression network analysis (WGCNA) pinpointed 70 hub candidates. Further screening of these 70 hub candidates in TCGA lung cancer cohorts via LASSO, Random Forest, and multivariate Cox regression suggested CYP4B1 as the only independent prognostic marker.

View Article and Find Full Text PDF

Cardiac hypertrophy is a common adaptation to cardiovascular stress and often a prelude to heart failure. We examined how S-palmitoylation of the small GTPase, Ras-related C3 botulinum toxin substrate 1 (Rac1), impacts cardiomyocyte stress signaling. Mutation of the cysteine-178 palmitoylation site impaired activation of Rac1 when overexpressed in cardiomyocytes.

View Article and Find Full Text PDF

Background MRI-derived arrhythmogenic substrate, including late gadolinium enhancement (LGE) and extracellular volume fraction (ECV), is indicative of sudden cardiac death (SCD) risk in nonischemic dilated cardiomyopathy (DCM). The relative prognostic value of LGE and ECV remains unclear. Purpose To evaluate the performance of LGE and T1 mapping in predicting SCD in patients with DCM and to explore clinical implementation.

View Article and Find Full Text PDF