Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Objective: Adhesion of cells to the extracellular matrix is facilitated by integrin receptors. We recently found that a nanoscale organization of plasma membrane located integrins containing the β1 subunit is responsible for an enhanced radio-resistance in 3D cultured cells over cells grown in 2D. While ionizing radiation is known to have broad effects on the lipid composition of the plasma membrane and their organization in lipid-rafts, it is not clear whether the effects of ionizing radiation on the nanoscale clustering of integrins is lipid-raft dependent.

Results: Using single molecule microscopy we can show that β1 integrins colocalize with cholesterol in lipid-rafts. Ionizing radiation, as an extrinsic stressor, causes the separation of β1 integrins from cholesterol lipid raft suggesting that the effects of ionizing radiation on the clustering of β1 integrins are lipid-raft independent.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5717827PMC
http://dx.doi.org/10.1186/s13104-017-3032-8DOI Listing

Publication Analysis

Top Keywords

ionizing radiation
20
β1 integrins
12
plasma membrane
8
effects ionizing
8
integrins lipid-raft
8
ionizing
5
radiation
5
β1
5
integrins
5
lipid-rafts remain
4

Similar Publications

A Monte Carlo Method for Estimating Secondary Photon Yields from Beta-emitting Radionuclides Concentrated in Environmental Soil.

Health Phys

September 2025

Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA.

External exposure due to secondary photons (predominantly bremsstrahlung) generated from electron source emissions in environmental soil are of concern due to their ability to deposit significant amounts of ionizing energy to organs and tissues within the body. The "condensed history method" employed in many modern Monte Carlo (MC) codes may be used to simulate secondary photon yields (given as photons per beta decay) arising from electron source emissions with relatively few assumptions regarding the secondary photon spatial, energy, and angular dependencies. These yields may in turn be used to derive protection quantities such as secondary photon effective dose rate (DR) and risk coefficients for a variety of idealized external exposure scenarios.

View Article and Find Full Text PDF

Cell senescence is a state of stable proliferation arrest characterized by morphological changes and high senescence-associated β-galactosidase (SA-β-gal) activity. Inducing senescence in cancer cells is beneficial for cancer therapy due to proliferation arrest, however, the mechanisms underlying this process remain insufficiently understood. Therefore, the present study investigated the mechanisms of radiation-induced cellular senescence in A549 human lung cancer cells, focusing on the DNA damage response and cell cycle regulation.

View Article and Find Full Text PDF

Radiation exposure initiates a cascade of reactions, including the release of reactive oxygen species, DNA double-strand breaks, and cellular apoptosis, leading to cell death, tissue damage, and potentially the development of cancer. Consequently, there is an urgent need to develop highly effective and low-toxicity radioprotective agents. Traditional chemically synthesized protective agents face significant limitations in clinical applicability due to their pronounced off-target toxicity, narrow therapeutic window, and high production costs.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) are the main cause of mortality worldwide, with coronary artery disease (CAD) noted as one of the major causes of CVD. An early and accurate diagnosis is important for improved outcomes in CAD patients. Invasive coronary angiography and coronary computed tomography angiography are accurate diagnostic tools for CAD.

View Article and Find Full Text PDF

3D isotropic FastView MRI localizer allows reliable torsion measurements of the lower limb.

Eur Radiol Exp

September 2025

Department of Orthopaedics and Trauma Surgery, Orthopaedic Oncology, Musculoskeletal University Center Munich (MUM), University Hospital, LMU Munich, Munich, Germany.

Computed tomography (CT) and magnetic resonance imaging (MRI) are commonly used to assess femoral and tibial torsion. While CT offers high spatial resolution, it involves ionizing radiation. MRI avoids radiation but requires multiple sequences and extended acquisition time.

View Article and Find Full Text PDF