Biomacromolecules
September 2024
Carbohydrate-binding modules (CBM) have emerged as useful tools for a wide range of tasks, including the use as purification tags or for cellulose fiber modification. For this purpose, the CBM needs to be attached to a target protein leading to large constructs. We investigated if short peptides from the carbohydrate binding site of CBMs can bind in a similar way as native, full-length CBMs to nanocrystalline cellulose (NCC) or cotton linter paper.
View Article and Find Full Text PDFWhen the K channel-like protein Kesv from Ectocarpus siliculosus virus 1 is heterologously expressed in mammalian cells, it is sorted to the mitochondria. This targeting can be redirected to the endoplasmic reticulum (ER) by altering the codon usage in distinct regions of the gene or by inserting a triplet of hydrophobic amino acids (AAs) into the protein's C-terminal transmembrane domain (ct-TMD). Systematic variations in the flavor of the inserted AAs and/or its codon usage show that a positive charge in the inserted AA triplet alone serves as strong signal for mitochondria sorting.
View Article and Find Full Text PDFLow-dose radiotherapy (LD-RT) is a local treatment option for patients with chronic degenerative and inflammatory diseases, in particular musculoskeletal diseases. Despite reported analgesic and anti-inflammatory effects, cellular and molecular mechanisms related to osteoimmunological effects are still elusive. Here we test the hypothesis that X-irradiation inhibits the differentiation of precursor osteoclasts into mature osteoclasts (mOC) and their bone resorbing activity.
View Article and Find Full Text PDFAnti-inflammatory effects of low-dose irradiation often follow a non-linear dose-effect relationship. These characteristics were also described for the modulation of leukocyte adhesion to endothelial cells. Previous results further revealed a contribution of reactive oxygen species (ROS) and anti-oxidative factors to a reduced leukocyte adhesion.
View Article and Find Full Text PDFMicrofluidic paper combines pump-free water transport at low cost with a high degree of sustainability, as well as good availability of the paper-forming cellulosic material, thus making it an attractive candidate for point-of-care (POC) analytics and diagnostics. Although a number of interesting demonstrators for such paper devices have been reported to date, a number of challenges still exist, which limit a successful transfer into marketable applications. A strong limitation in this respect is the (unspecific) adsorption of protein analytes to the paper fibers during the lateral flow assay.
View Article and Find Full Text PDFHerein, we report a novel two-step method for the covalent, site-directed, and efficient immobilization of proteins on lab-made paper sheets. First, paper fibers were modified with a peptidic anchor comprising enzyme recognition motifs. Four different conjugation strategies for peptide immobilization were evaluated with respect to reproducibility and fiber loading efficiency.
View Article and Find Full Text PDFDue to the redundancy of the genetic code most amino acids are encoded by multiple synonymous codons. It has been proposed that a biased frequency of synonymous codons can affect the function of proteins by modulating distinct steps in transcription, translation and folding. Here, we use two similar prototype K channels as model systems to examine whether codon choice has an impact on protein sorting.
View Article and Find Full Text PDFSince the pandemic outbreak of Covid-19 in December 2019, several lateral flow assay (LFA) devices were developed to enable the constant monitoring of regional and global infection processes. Additionally, innumerable lateral flow test devices are frequently used for determination of different clinical parameters, food safety, and environmental factors. Since common LFAs rely on non-biodegradable nitrocellulose membranes, we focused on their replacement by cellulose-composed, biodegradable papers.
View Article and Find Full Text PDFThe inner membranes of mitochondria contain several types of K channels, which modulate the membrane potential of the organelle and contribute in this way to cytoprotection and the regulation of cell death. To better study the causal relationship between K channel activity and physiological changes, we developed an optogenetic platform for a light-triggered modulation of K conductance in mitochondria. By using the light-sensitive interaction between cryptochrome 2 and the regulatory protein CIB1, we can trigger the transcription of a small and highly selective K channel, which is in mammalian cells targeted into the inner membrane of mitochondria.
View Article and Find Full Text PDFObjective: Adhesion of cells to the extracellular matrix is facilitated by integrin receptors. We recently found that a nanoscale organization of plasma membrane located integrins containing the β1 subunit is responsible for an enhanced radio-resistance in 3D cultured cells over cells grown in 2D. While ionizing radiation is known to have broad effects on the lipid composition of the plasma membrane and their organization in lipid-rafts, it is not clear whether the effects of ionizing radiation on the nanoscale clustering of integrins is lipid-raft dependent.
View Article and Find Full Text PDFThe cellular interaction with the extracellular matrix (ECM) modulates many key processes such as proliferation, migration, differentiation and survival. In addition, cells cultured under 3D conditions in presence of an ECM display a marked radioresistance towards ionizing radiation (IR) in comparison to conventionally 2D cultured cells. This process, also known as "cell-adhesion-mediated-radio-resistance" (CAM-RR), has been linked to the chromatin structure that differs between cells cultured on stiff surfaces versus cell grown on soft planar supports or in 3D environments.
View Article and Find Full Text PDFCells of multicellular organisms are surrounded by and attached to a matrix of fibrous polysaccharides and proteins known as the extracellular matrix. This fibrous network not only serves as a structural support to cells and tissues but also plays an integral part in the process as important as proliferation, differentiation, or defense. While at first sight, the extracellular matrices of plant and animals do not have much in common, a closer look reveals remarkable similarities.
View Article and Find Full Text PDFCombining optical properties with a limited choice of fluorophores turns single-molecule imaging in plants into a challenging task. This explains why the technique, despite its success in the field of animal cell biology, is far from being routinely applied in plant cell research. The same challenges, however, also apply to the application of single-molecule microscopy to any intact tissue or multicellular 3D cell culture.
View Article and Find Full Text PDFp24 proteins are a family of type I membrane proteins localized to compartments of the early secretory pathway and to coat protein I (COPI)- and COPII-coated vesicles. They can be classified, by sequence homology, into four subfamilies, named p24α, p24β, p24γ, and p24δ. In contrast to animals and fungi, plants contain only members of the p24β and p24δ subfamilies, the latter probably including two different subclasses.
View Article and Find Full Text PDFNew brefeldin A (1) analogues were obtained by introducing a variety of substituents at C15. Most of the analogues exhibited significant biological activity. (15R)-Trifluoromethyl-nor-brefeldin A (3), (15R)-vinyl-nor-brefeldin A (5), their epimers 4 and 6 as well as (15S)-ethyl-nor-brefeldin A (2) were prepared from the key building blocks 12 or 24 by Julia-Kocienski olefination with tetrazolyl sulfones and subsequent macrolactonization.
View Article and Find Full Text PDFMembrane anchorage was tested as a strategy to accumulate recombinant proteins in transgenic plants. Transmembrane domains of different lengths and topology were fused to the cytosolic HIV antigen p24, to promote endoplasmic reticulum (ER) residence or traffic to distal compartments of the secretory pathway in transgenic tobacco. Fusions to a domain of the maize seed storage protein γ-zein were also expressed, as a reference strategy that leads to very high stability via the formation of large polymers in the ER lumen.
View Article and Find Full Text PDFPDMP (D-L-threo-1-phenyl-2-decanoyl amino-3-morpholino-1-propanol) is a well-known inhibitor of glucosylceramide synthase (GCS), a key enzyme in sphingolipid biosynthesis. Through the resultant increase in ceramides which interact with mTOR and Beclin1 (Atg6), this drug is also known to induce macroautophagy in mammalian cells. This study investigated the response of Arabidopsis root cells to PDMP, and what are probably numerous tightly packed small vacuoles in the control cells appear to fuse to form a single globular-shaped vacuole.
View Article and Find Full Text PDFPer definition, ER exit sites are COPII vesiculation events at the surface of the ER and in higher plants are only visualizable in the electron microscope through cryofixation techniques. Fluorescent COPII labeling moves with Golgi stacks and locates to the interface between the ER and the Golgi. In contrast, the domain of the ER where retrograde COPI vesicles fuse, i.
View Article and Find Full Text PDFp24 proteins are a family of type I membrane proteins localized to compartments of the early secretory pathway and to coat protein I (COPI)- and COPII-coated vesicles. They can be classified, by sequence homology, into four subfamilies, named p24α, p24β, p24γ, and p24δ. In contrast to animals and fungi, plants contain only members of the p24β and p24δ subfamilies.
View Article and Find Full Text PDFWe screened a panel of compounds derived from Exo2 - a drug that perturbs post-Golgi compartments and trafficking in mammalian cells - for their effect on the secretory pathway in Arabidopsis root epidermal cells. While Exo2 and most related compounds had no significant effect, one Exo2 derivative, named LG8, induced severe morphological alterations in both the Golgi (at high concentrations) and the endoplasmic reticulum (ER). LG8 causes the ER to form foci of interconnecting tubules, which at the ultrastructural level appear similar to those previously reported in Arabidopsis roots after treatment with the herbicide oryzalin.
View Article and Find Full Text PDFThe claim that the 6 kDa viral protein (VP) of Tobacco Etch Virus is a marker for ER exit sites (ERES) has been investigated. When transiently expressed as a CFP tagged fusion construct in tobacco mesophyll protoplasts, this integral membrane protein co-localizes with both the COPII coat protein YFP-SEC24 and the Golgi marker Man1-RFP. However, when over-expressed the VP locates to larger spherical structures which co-localize with neither ER nor Golgi markers.
View Article and Find Full Text PDFInterphase nuclear architecture is disrupted and rapidly reformed with each cell division cycle. Successive cell generations exhibit a "memory" of this nuclear architecture, as well as for gene expression. Furthermore, many features of nuclear and mitotic chromosome structure are recognizably species and tissue specific.
View Article and Find Full Text PDFThe effects of two brefeldin A (BFA) analogues (BFA lactam; 6(R)-hydroxy-BFA) on plant cells were tested. Although these two compounds elicited BFA-like effects in mammalian cells, the lactam analogue failed to elicit a response in plant cells. By contrast, while the 6(R)-hydroxy-BFA analogue gave rise to a classic BFA response in tobacco mesophyll protoplasts and true leaves of Arabidopsis (redistribution of Golgi enzymes into the ER), it failed to cause the formation of BFA-compartments in Arabidopsis root cells and cotyledonary leaves.
View Article and Find Full Text PDFPlants constantly adjust their repertoire of plasma membrane proteins that mediates transduction of environmental and developmental signals as well as transport of ions, nutrients, and hormones. The importance of regulated secretory and endocytic trafficking is becoming increasingly clear; however, our knowledge of the compartments and molecular machinery involved is still fragmentary. We used immunogold electron microscopy and confocal laser scanning microscopy to trace the route of cargo molecules, including the BRASSINOSTEROID INSENSITIVE1 receptor and the REQUIRES HIGH BORON1 boron exporter, throughout the plant endomembrane system.
View Article and Find Full Text PDFTransport of soluble cargo molecules to the lytic vacuole of plants requires vacuolar sorting receptors (VSRs) to divert transport of vacuolar cargo from the default secretory route to the cell surface. Just as important is the trafficking of the VSRs themselves, a process that encompasses anterograde transport of receptor-ligand complexes from a donor compartment, dissociation of these complexes upon arrival at the target compartment, and recycling of the receptor back to the donor compartment for a further round of ligand transport. We have previously shown that retromer-mediated recycling of the plant VSR BP80 starts at the trans-Golgi network (TGN).
View Article and Find Full Text PDF