Cancerous B cells are almost indistinguishable from their non-malignant counterparts regarding their surface antigen expression. Accordingly, the challenge to be faced consists in elimination of the malignant B cell population while maintaining a functional adaptive immune system. Here, we present an IgM-specific antibody-drug conjugate masked by fusion of the epitope-bearing IgM constant domain.
View Article and Find Full Text PDFChicken-derived antibodies emerged as a promising tool for diagnostic and therapeutic usage. Due to the phylogenetic distance between birds and mammals, chicken immunization campaigns with human antigens result in a chicken antibody (IgY) repertoire targeting epitopes not addressed by rodent-derived antibodies. However, this phylogenetic distance accounts for a low homology of IgY molecules to human antibodies, resulting in potential immunogenicity and thus excluding IgYs from therapeutic applications.
View Article and Find Full Text PDFDue to the large evolutionary distance between birds (Aves) und humans, immunization of chickens with human proteins results in a strong response of the bird's adaptive immune system to proteins of mammalian origin. Additionally, chicken-derived antibodies display less undesired cross-reactivity in analytical setups than conventional rodent-derived antibodies. Due to these features as well as the facile amplification of antibody-coding genes, chicken-derived antibodies emerged as promising molecules for the immunotherapy and various biotechnological applications.
View Article and Find Full Text PDFThe interaction of the Fc region of therapeutic antibodies and antibody-drug conjugates with Fcγ receptors (FcγRs) can lead to unpredictable and severe side effects. Over the last decades several strategies have been developed to overcome this drawback, including extensive Fc- and glycoengineering and antibody isotype switching. However, these approaches result in permanently Fc-silenced antibody derivates which partially or completely lack antibody-mediated effector functions.
View Article and Find Full Text PDFSince the pandemic outbreak of Covid-19 in December 2019, several lateral flow assay (LFA) devices were developed to enable the constant monitoring of regional and global infection processes. Additionally, innumerable lateral flow test devices are frequently used for determination of different clinical parameters, food safety, and environmental factors. Since common LFAs rely on non-biodegradable nitrocellulose membranes, we focused on their replacement by cellulose-composed, biodegradable papers.
View Article and Find Full Text PDFThe development of novel biotherapeutics based on peptides and proteins is often limited to extracellular targets, because these molecules are not able to reach the cytosol. In recent years, several approaches were proposed to overcome this limitation. A plethora of cell-penetrating peptides (CPPs) was developed for cytoplasmic delivery of cell-impermeable cargo molecules.
View Article and Find Full Text PDFGeneration of high-affinity monoclonal antibodies by immunization of chickens is a valuable strategy, particularly for obtaining antibodies directed against epitopes that are conserved in mammals. A generic procedure is established for the humanization of chicken-derived antibodies. To this end, high-affinity binders of the epidermal growth factor receptor extracellular domain are isolated from immunized chickens using yeast surface display.
View Article and Find Full Text PDFAffinity chromatography provides an excellent platform for protein purification, which is a key step in the large scale downstream processing of therapeutic monoclonal antibodies (Mabs). Protein A chromatography constitutes the gold standard for Mab purification. However, the required acidic conditions (2.
View Article and Find Full Text PDFIn this study, we present a straightforward approach for functional cell-based screening by co-encapsulation of secretor yeast cells and reporter mammalian cells in millions of individual agarose-containing microdroplets. Our system is compatible with ultra-high-throughput selection utilizing standard fluorescence-activated cell sorters (FACS) without need of extensive adaptation and optimization. In a model study we co-encapsulated murine interleukin 3 (mIL-3)-secreting S.
View Article and Find Full Text PDFYeast surface display (YSD) is an ultra-high throughput method used in protein engineering. Protein-protein interactions as well as surface presentation on the yeast cell surface are verified through fluorophore-conjugated labeling agents.In this chapter we describe an improved setup for full-length surface presentation detection.
View Article and Find Full Text PDFYeast surface display emerged as a viable tool for the generation of human and murine monoclonal antibodies. This platform technology enables the careful definition of selection conditions, the potential for high-throughput screening, as well as the isolation of antibodies recognizing predefined epitopes. In this study, the applicability of yeast surface display in combination with fluorescence-activated cell sorting (FACS) for the isolation of antigen-specific chicken-derived antibodies is demonstrated.
View Article and Find Full Text PDF