98%
921
2 minutes
20
Selective oxidation of the silicon element of silicon germanium (SiGe) alloys during thermal oxidation is a very important and technologically relevant mechanism used to fabricate a variety of microelectronic devices. We develop here a simple integrative approach involving vapor-liquid-solid (VLS) growth followed by selective oxidation steps to the construction of core-shell nanowires and higher-level ordered systems with scalable configurations. We examine the selective oxidation/condensation process under nonequilibrium conditions that gives rise to spontaneous formation of core-shell structures by germanium condensation. We contrast this strategy that uses reaction-diffusion-segregation mechanisms to produce coherently strained structures with highly configurable geometry and abrupt interfaces with growth-based processes which lead to low strained systems with nonuniform composition, three-dimensional morphology, and broad core-shell interface. We specially focus on SiGe core-shell nanowires and demonstrate that they can have up to 70% Ge-rich shell and 2% homogeneous strain with core diameter as small as 14 nm. Key elements of the building process associated with this approach are identified with regard to existing theoretical models. Moreover, starting from results of ab initio calculations, we discuss the electronic structure of these novel nanostructures as well as their wide potential for advanced device applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.nanolett.7b02832 | DOI Listing |
Photobiomodul Photomed Laser Surg
September 2025
Department of Oral and Maxillofacial Diagnostic Sciences, Dental College and Hospital, Taibah University, Medina, Saudi Arabia.
Photobiomodulation (PBM) therapy involves the use of low-dose, nonionizing light to reduce pain and inflammation, promote wound healing, and enhance tissue regeneration. PBM-based therapy of various dental conditions is associated with improved treatment outcomes. This study aims to critically review the literature to highlight the underlying molecular biological mechanisms and clinical applications of PBM in modern dental practice.
View Article and Find Full Text PDFSmall
September 2025
School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia.
Plastic waste continues to be a major environmental challenge, worsened by energy-intensive conventional recycling methods that require highly pure feedstocks. In this review, emerging electrochemical upcycling technologies are critically examined, focusing on the electro-oxidation transformation of polyethylene terephthalate (PET) into valuable chemical products. Key reaction pathways and target products are outlined to clarify the selective electrochemical reforming of PET.
View Article and Find Full Text PDFSmall
September 2025
Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, School of Chemistry, Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing, 100191, P. R. China.
In recent years, light-controlled ion transport systems have attracted widespread attention, however, the use of photoresponsive materials suffers from rapid carrier recombination, thermal field limitations, and narrow spectral response, which significantly restricts their performance enhancement in osmotic energy conversion. This study innovatively couples "blue energy" (osmotic energy) with "green energy" (solar energy), assembling graphene oxide/molybdenum disulfide/sulfonated cellulose nanocrystal (GO/ MoS/CNC) ion-channel membranes. Under solar irradiation, the energy level difference between MoS and GO effectively suppresses the recombination of photogenerated carriers, generating more active electrons and significantly enhancing the carrier density, thereby improving the current flux and ion selectivity.
View Article and Find Full Text PDFNanoscale
September 2025
College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
Precious metal nanomaterials have demonstrated significant advantages in the field of alcohol electro-catalytic oxidation. In this study, the inexpensive main group metals lead (Pb) and platinum (Pt) have been innovatively selected to construct an alloy catalyst. By employing the solvent-thermal method, PtPb nanoparticles with a well-defined crystalline structure were successfully synthesized, exhibiting excellent performance.
View Article and Find Full Text PDFNat Prod Rep
September 2025
State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, School of Life Sciences, Nanjing University, Nanjing 210023, China.
Covering: up to April 2025Bacterial aromatic polyketides represent a notable class of natural products that have found extensive applications in clinical treatments. In their biosynthesis, oxidative rearrangements represent critical transformations that typically afford diverse scaffolds, structural rigidity, and biological activities. In this context, it is evident that redox enzymes are frequently implicated in various rearrangement processes, whereby they facilitate the transformation of pathway precursors into mature natural products.
View Article and Find Full Text PDF