Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose: The Phosphatidylinositol 3-kinase (PI3Ks) pathway is commonly altereted in breast cancer patients, but its role is still unclear. Taselisib, a mutant PI3Kα selective inhibitor, and ipatasertib, an AKT inhibitor, are currently under investigation in clinical trials in combination with paclitaxel or hormonal therapies in breast cancer. The aim of this study was to evaluate if PI3K or AKT inhibition can prevent resistance to chemotherapy and potentiate its efficacy.

Experimental Design: The efficacy of combined treatment of ipatasertib and taselisib plus vinorelbine or paclitaxel or eribulin was evaluated on human breast cancer cells (with different expression profile of hormonal receptors, HER2, and of PI3Ka mutation) on cell survival by using MTT (3,(4,5-dimethylthiazol-2)2,5 difeniltetrazolium bromide) and colony forming assays on cell apoptosis by flow-cytometry analysis. We also investigated the effect of combined treatment on downstream intracellular signaling, by western blot analysis, and on metastatic properties, by migration assays. Finally, we analyzed changes in cell cytoskeleton by immunofluorescence.

Results: A significant synergism of ipatasertib or taselisib plus anti-microtubule chemotherapy in terms of anti-proliferative, pro-apoptotic and anti-metastatic effect was observed. The combined treatment completely inhibited the activation of proteins downstream of PI3K and MAPK pathways and affected the expression of survivin. Combined treatments completely disorganized the cytoskeleton in human breast cancer cells, with contemporary delocalization of survivin from cytoplasm to nucleus, thus suggesting a potential mechanism for this combination.

Conclusions: Targeting PI3K may enhance the efficacy of anti-microtubule drugs in human breast cancer cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652721PMC
http://dx.doi.org/10.18632/oncotarget.20385DOI Listing

Publication Analysis

Top Keywords

breast cancer
24
human breast
16
cancer cells
16
combined treatment
12
phosphatidylinositol 3-kinase
8
efficacy anti-microtubule
8
anti-microtubule drugs
8
drugs human
8
ipatasertib taselisib
8
breast
6

Similar Publications

Berberine (BBR) is an isoquinoline alkaloid with a variety of biological activities, including anti-microbial and anti-tumoral activities. However, the cellular targets of BBR and the roles of BBR in the radiosensitivity of breast cancer cells are not well defined. In this study, we investigated the effects of BBR on the radiosensitivity of BT549 triple-negative breast cancer cells.

View Article and Find Full Text PDF

Mendelian Randomization Study: The Impact of Gut Microbiota on Survival in HR+ Breast Cancer Patients Under Different Treatment Regimens Through the Modulation of Immune Cell Phenotypes.

Clin Breast Cancer

August 2025

Department of Pharmacy, Fujian Provincial Hospital, Shengli Clinical Medical College of Fujian Medical University, Fuzhou University Affiliated Provincial Hospital, School of Pharmacy, Fujian Medical University, Fuzhou, China. Electronic address:

Background: Emerging evidence suggests that the gut microbiota (GM) may influence the progression of breast cancer by modulating immune responses. Given the vast diversity of GM and immune cell phenotypes, this study aimed to utilize the most advanced and comprehensive data to explore the causal relationships among the GM, immune cell phenotypes, and survival rates in hormone receptor-positive (HR+) breast cancer patients under different treatment regimens.

Methods: We investigated the causal relationships between the GM, immune cell phenotypes, and survival rates in HR+ breast cancer patients treated with 11 distinct therapeutic strategies using Mendelian randomization.

View Article and Find Full Text PDF

[Development of an AI-based Positioning Technical Assistance System for Mammography].

Nihon Hoshasen Gijutsu Gakkai Zasshi

September 2025

Department of Radiological Technology, Faculty of Health Sciences, Gifu University of Medical Science.

Purpose: We aimed to develop an AI-based system to score the positioning in mammography (MG), with the goal of establishing a foundation for future technical support.

Methods: Using 800 mediolateral oblique (MLO) images, we developed an AI model (Mask Generation Model) for automatic extraction of three regions: the pectoralis major muscle, the mammary gland region, and the nipple. Using this model, we extracted three regions from 1544 MLO images and generated mask images.

View Article and Find Full Text PDF

Background: Breast-conserving surgery (BCS) is the primary surgical approach for patients with breast cancer. The accurate determination of surgical margins during BCS is critical for patient prognosis; however, time constraints and limitations in current pathological techniques often prevent pathologists from performing this assessment intraoperatively. The inability to reliably assess margins during surgery can lead to incomplete tumor removal and the need for additional surgeries.

View Article and Find Full Text PDF