Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To report a single-institution experience of gamma evaluations with 2%/1 mm for stereotactic ablative radiotherapy (SABR) delivered with volumetric modulated arc therapy (VMAT) technique, from January 2014 to January 2016. A total of 168 SABR VMAT plans were analyzed with a gamma criterion of 2%/1 mm, a threshold value of 10%, and a tolerance level of 90%. Of the 168 cases, four cases failed with 2%/1 mm. The average passing rate was 97.0% ± 2.5%. Three of the four failed cases showed passing rates higher than 90%, which was achieved by shifting the measuring device by 1 mm in the left-to-right or anterior-to-posterior directions. One failed case showed a passing rate higher than 90%, which was achieved by changing the threshold value from 10% to 5%, leading to an increase in the number of tested points from 26 to 51. Concerns regarding the high susceptibility of the gamma criterion of 2%/1 mm to setup errors of the measuring device are unnecessary based on our two-year experience, since only four cases failed with the 2%/1 mm from a total of 168 clinical cases. Therefore, the gamma criterion of 2%/1 mm could be successfully applied in the clinic with its high sensitivity to detect errors in VMAT plans.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5652687PMC
http://dx.doi.org/10.18632/oncotarget.18530DOI Listing

Publication Analysis

Top Keywords

gamma criterion
16
criterion 2%/1
16
2%/1 stereotactic
8
stereotactic ablative
8
ablative radiotherapy
8
delivered volumetric
8
volumetric modulated
8
modulated arc
8
arc therapy
8
total 168
8

Similar Publications

The main inhibitory neurotransmitter in the central nervous system is γ-aminobutyric acid (GABA). GABA transporter type 1 (GAT-1) is the principal GABA transporter in the brain, and it plays a crucial role in modulating GABA signaling. Its potential role in several neuropsychiatric disorders makes it an important target to study.

View Article and Find Full Text PDF

Purpose: Experimental patient-specific quality assurance (PSQA) in proton therapy is a labor-intensive process requiring physical access to treatment rooms, beam time, and significant human resources. With the increasing complexity of treatment plans and the implementation of adaptive therapy, the need for efficient alternatives is pressing. Simulation-based techniques are proposed as a replacement or enhancement for experimental ones.

View Article and Find Full Text PDF

Background And Purpose: Reducing the dose rate enhances efficacy in radiation therapy by allowing increased repair of sub-lethal damage. Pulsed low-dose radiation therapy (PLDR) is an innovative approach that is safe and effective for the reirradiation of recurrent gliomas and radioresistant tumors. In this study, the accuracy of the low dose rate volumetric modulated arc therapy (VMAT) delivery is tested in an Elekta Versa HD linear accelerator (linac) for delivering PLDR.

View Article and Find Full Text PDF

Epilepsy remains a significant global health concern with increasing prevalence and incidence. This study aimed to model the time to first remission among epilepsy patients at Jimma University Medical Center, Ethiopia, using parametric shared frailty models. A retrospective study was conducted on epilepsy patients treated between 1st January 2018 and 30th December 2023.

View Article and Find Full Text PDF

Stereotactic radiosurgery (SRS) for multiple brain metastases can be delivered with a single isocenter and non-coplanar arcs, achieving highly conformal dose distributions at the cost of extreme modulation of treatment machine parameters. As a result, SRS plans are at a higher risk of patient-specific quality assurance (PSQA) failure compared to standard treatments. This study aimed to develop a machine-learning (ML) model to predict the PSQA outcome (gamma passing rate, GPR) of SRS plans.

View Article and Find Full Text PDF