PCR-based tests for the early diagnosis of sepsis. Where do we stand?

Curr Opin Infect Dis

aCentre for Infectious Diseases and Microbiology Laboratory Services, NSW Health PathologybCentre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Westmead HospitalcThe Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney, Sydney, New

Published: December 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Purpose Of Review: Bloodstream infections are a major cause of hospital and ICU admission with high morbidity and mortality; however, early and targeted antimicrobial therapy reduces mortality in high-risk patients. This article focuses on the diagnosis of bloodstream infections by PCR-based approaches at an early stage to enable prompt treatment and prevent organ dysfunction.

Recent Findings: PCR systems offering highly multiplexed targeting of bacterial and/or fungal pathogens (in whole blood) offer the best opportunity for clinical impact, as informed decisions can be made within 4-8 h of the blood draw. Although more rapid, these systems are typically associated with lower sensitivity and specificity than postculture detection methods which rely on microbial growth. Additionally, unlike postculture methods, detection directly from blood is not prone to misleading results because of concurrent (or previous) therapy, which limit clinical relevance.

Summary: Rapid and accurate identification of the cause of sepsis is essential in improving patient outcomes. Early identification of these pathogens by nucleic acid detection assays directly from blood samples remains key to achieving this, particularly if taken at the time of presentation. Selection of the most suitable PCR system is typically influenced by local epidemiology and by the resources of the testing laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1097/QCO.0000000000000407DOI Listing

Publication Analysis

Top Keywords

bloodstream infections
8
directly blood
8
pcr-based tests
4
early
4
tests early
4
early diagnosis
4
diagnosis sepsis
4
sepsis stand?
4
stand? purpose
4
purpose review
4

Similar Publications

Sepsis-induced cardiomyopathy (SIC) is a serious complication of sepsis. The relationship between SIC and protein acetylation, particularly the balance between acetylation and deacetylation in cardiomyocyte subcellular structures, as well as how nuclear-mitochondrial coordination maintains standard antioxidant stress capacity, remains unclear. This study focused on exploring the nuclear-mitochondrial regulatory mechanisms formed by the interplay of Sirtuin 3 (SIRT3) and Forkhead box O3a (FOXO3a).

View Article and Find Full Text PDF

This study aimed to evaluate the quality of multidisciplinary team (MDT) management in healthcare-associated infection (HAI) prevention and control, as well as its impact on multidrug-resistant organism (MDRO) infections. This was a retrospective, single-center study with a small sample size. A total of 400 patients admitted to the Departments of Critical Care Medicine or Orthopedics between January 2022 and December 2023 were divided into a control group (n = 200, receiving conventional HAI management) and an experimental group (n = 200, undergoing MDT management).

View Article and Find Full Text PDF

Abnormal immune responses are common clinical features in septic patients. γδ T cells, as innate immune cells, play an important role in host defense, immune surveillance and homeostasis. However, the immune characteristics of γδ T cells in pediatric sepsis remains remain poorly understood.

View Article and Find Full Text PDF

Ferroptosis is involved in the progression of sepsis-induced acute lung injury (ALI). Kaempferol is a flavonoid compound that can protect against ALI. 5-Methylcytosine (m5C) is involved in the pathogenesis of sepsis.

View Article and Find Full Text PDF

Sepsis is a systemic inflammatory response syndrome triggered by infection. Severe sepsis is associated with dysbiosis of the intestinal flora and impaired intestinal function. Ellagic acid (EA) is a natural compound known for its ability to inhibit bacteria and viruses, thereby preventing infections.

View Article and Find Full Text PDF