Selenium promotes metabolic conversion of T-2 toxin to HT-2 toxin in cultured human chondrocytes.

J Trace Elem Med Biol

Institute of Endemic Diseases, School of Public Health of Health Science Center, Xi'an Jiaotong University, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an 710061, China. Electronic address:

Published: December 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

To explore the metabolism of T-2 toxin in human chondrocytes (HCs) and determine the impact of selenium supplementation. For determination of cytotoxicity using the MTT assay, optical density values were read with an automatic enzyme-linked immunosorbent assay reader at 510nm. Cell survival was calculated and the cytotoxicity estimated. To identify the metabolites of T-2 toxin, the medium supernatants and C28/I2 cells were analyzed by high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) separately. For HPLC-MS/MS, the mobile phase A was water and phase B was 98% methanol. The gradient for the elution was: 0-0.5min, 50% of B; 0.5-2.0min, 100% of B; 2.0-3.5min, 100% of B; 3.6-6min, 50% of B. T-2 toxin increased the toxicity to C28/I2 cells significantly in a dose- and time-dependent manner (viability range 91.5-22.0%). Supplementation with selenium (100ng/mL) could increase the cell viability after the 24h incubation. The concentration of T-2 toxin in the cell medium decreased from 20 to 6.67±1.02ng/mL, and the concentration of HT-2 toxin increased from 0 to 6.88±1.23ng/mL during the 48h incubation, whereas the relative concentration of T-2 toxin in cells increased from 0 to 12.80±1.84ng/g. Supplementary selenium in the HCs cultures reduced the cytotoxicity induced by T-2 toxin significantly, and was associated with rapid conversion of T-2 toxin in the culture medium to HT-2 toxin. T-2 toxin was more toxic to HCs than HT-2 toxin at equivalent concentrations. HT-2 toxin was a detectable metabolite of T-2 toxin in cultured HCs, and selenium enhanced the metabolic conversion of T-2 toxin, reducing its cytotoxicity to HCs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtemb.2017.08.009DOI Listing

Publication Analysis

Top Keywords

t-2 toxin
44
ht-2 toxin
20
toxin
16
conversion t-2
12
t-2
11
metabolic conversion
8
toxin cultured
8
human chondrocytes
8
c28/i2 cells
8
toxin increased
8

Similar Publications

T-2 Toxin Exploits Gut-Derived Staphylococcus Saprophyticus to Disrupt Hepatic Macrophage Homeostasis.

Adv Sci (Weinh)

September 2025

Hunan Engineering Research Center of Livestock and Poultry Health Care, College of Veterinary Medicine, Hunan Agricultural University, Changsha, 410128, China.

T-2 toxin, a mycotoxin that frequently causes hidden contamination in food and animal feed, poses a substantial threat to both human and animal health. Staphylococcus saprophyticus (S. saprophyticus) is an opportunistic pathogen that widely infects humans and various animals.

View Article and Find Full Text PDF

T-2 Toxin-Induced Hepatotoxicity in HepG2 Cells Involves the Inflammatory and Nrf2/HO-1 Pathways.

Toxins (Basel)

August 2025

Research Group in Alternative Methods for Determining Toxics Effects and Risk Assessment of Contaminants and Mixtures (RiskTox), University of Valencia, 46100 Valencia, Spain.

The T-2 toxin is one of the most toxic mycotoxins, to which the population is exposed through the diet. T-2 toxins are especially found in cereals and cereal-based products. To deepen our understanding of the mechanisms of T-2 toxin action, the morphological changes, oxidative stress, and inflammatory response of this mycotoxin have been evaluated in HepG2 cells.

View Article and Find Full Text PDF

T-2 toxin and HT-2 toxin are commonly found in agricultural products and animal feed, posing serious effects to both humans and animals. This study employed combination index (CI) modeling and metabolomics to assess the combined cytotoxic effects of T-2 and HT-2 on four porcine cell types: intestinal porcine epithelial cells (IPEC-J2), porcine Leydig cells (PLCs), porcine ear fibroblasts (PEFs), and porcine hepatocytes (PHs). Cell viability assays revealed a dose-dependent reduction in viability across all cell lines, with relative sensitivities in the order: IPEC-J2 > PLCs > PEFs > PHs.

View Article and Find Full Text PDF

Chondroitin sulfate A-selenium nanoparticles protect chondrocytes from T-2 toxin-induced oxidative stress and mitochondrial dysfunction through activating autophagy by the SIRT1-AMPK-FOXO3 pathway.

Ecotoxicol Environ Saf

August 2025

Department of Occupational and Environmental Health, School of Public Health, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, China; Global Health Institute, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 712000, China; Key Laboratory for Disease Prevention

T-2 toxin is known to cause tissue and cellular damage, with chondrocytes being particularly vulnerable. In contrast, chondroitin sulfate A-selenium nanoparticles (CSA-SeNP) have shown cartilage-protective properties, although the precise molecular mechanism remains incompletely elucidated. This study used T-2 toxin and CSA-SeNP to treat human C28/I2 chondrocytes, and studied their effects on SIRT1-AMPK-FOXO3 pathway and oxidative damage, mitochondrial dysfunction, impaired autophagy, and apoptosis.

View Article and Find Full Text PDF

T-2 toxin (T-2), a foodborne mycotoxin, causes gut and liver injury in organisms. However, its effects on intestine in ducks and the mediating role of gut microbiota in pathogenesis remain unclear. This study investigated the involvement of gut microbiota in T-2-induced enterotoxicity and hepatotoxicity in ducks.

View Article and Find Full Text PDF