Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Integrin‑linked kinase (ILK) is overexpressed in ovarian cancer (OC), and ILK gene silencing results in apoptosis in OC cells. In the present study, the mechanism by which ILK induces apoptosis was explored from the perspective of microRNA (miRNA) expression. Alterations in the global miRNA expression profile were detected using a miRNA microarray after OC cells were transduced with an ILK small hairpin RNA lentivirus. ILK silencing led to a significant upregulation of 14 miRNAs by at least 1.5‑fold. These findings were validated by reverse transcription‑quantitative polymerase chain reaction. A pathway analysis of experimentally validated target genes revealed the inhibition of multiple cancer‑associated signaling pathways and the wnt signaling pathway. Compared with cells transfected with scrambled RNA, the ILK‑silenced cells had remarkably lower expression of wnt ligands (wnt3a, wnt4 and wnt5a) and downstream β‑catenin. ILK silencing led to apoptosis of OC cells and impaired the migratory ability. Taken together, the present results suggested that miRNA‑mediated wnt pathway alterations are involved in the anti‑apoptotic role of ILK in OC. It was also indicated that ILK silencing reduced the ability of OC cells to adhere to fibronectin, which may lead to unstable focal contact. Consistently, the phosphorylation levels of focal adhesion kinase and RAC‑α serine/threonine protein kinase were downregulated. The present work demonstrated the first global miRNA expression profile of OC cells when ILK was inhibited, and this expression profile may provide a basis for the development of biomarkers and therapeutic targets for OC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5865855PMC
http://dx.doi.org/10.3892/mmr.2017.7523DOI Listing

Publication Analysis

Top Keywords

mirna expression
12
expression profile
12
ilk silencing
12
ilk
9
integrin‑linked kinase
8
gene silencing
8
ovarian cancer
8
apoptosis cells
8
global mirna
8
silencing led
8

Similar Publications

Purpose: Lung cancer is currently the most common malignant tumor worldwide and one of the leading causes of cancer-related deaths, posing a serious threat to human health. MicroRNAs (miRNAs) are a class of endogenous non-coding small RNA molecules that regulate gene expression and are involved in various biological processes associated with lung cancer. Understanding the mechanisms of lung carcinogenesis and detecting disease biomarkers may enable early diagnosis of lung cancer.

View Article and Find Full Text PDF

Molecular subtypes of human skeletal muscle in cancer cachexia.

Nature

September 2025

Department of Laboratory Medicine and Pathology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada.

Cancer-associated muscle wasting is associated with poor clinical outcomes, but its underlying biology is largely uncharted in humans. Unbiased analysis of the RNAome (coding and non-coding RNAs) with unsupervised clustering using integrative non-negative matrix factorization provides a means of identifying distinct molecular subtypes and was applied here to muscle of patients with colorectal or pancreatic cancer. Rectus abdominis biopsies from 84 patients were profiled using high-throughput next-generation sequencing.

View Article and Find Full Text PDF

Prediction of microRNAs targeting oestrogen receptor beta: implications for emotional disorders.

Neuroscience

September 2025

Department of Neurotoxicology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawińskiego Str., 02-106 Warsaw, Poland.

This review consolidates the most recent information regarding the role of microRNAs (miRNAs) that target the oestrogen receptor beta (ESR2/ERβ) gene in the pathophysiology of emotional disorders, with a particular emphasis on stress-related conditions and anxiety. Since in silico predictions frequently precede experimental validation and algorithms such as TargetScan and DIANA-microT identified possible miRNA binding sites on ESR2 based on sequence complementarity, we demonstrate a high degree of accuracy in predicting functional interactions. Parallel evidence unrelated to the studied biological contexts supports the idea that miRNAs may regulate ERβ signalling in emotional disorders, thereby further supporting miRNA-ESR2 interactions.

View Article and Find Full Text PDF

Heparanase as a therapeutic target for mitigating cancer progression.

Biochim Biophys Acta Rev Cancer

September 2025

School of Applied Sciences, Suresh Gyan Vihar University, Jaipur 302017, Rajasthan, India. Electronic address:

Cancer has been one of the primary causes of mortality for the last three decades across the globe, with contemporary treatment modalities often falling short due to limitations viz. drug resistance, toxicity, and the inability to target molecular mechanisms of tumor progression. Among various intracellular mediators implicated in cancer progression, heparanase, a heparan sulfate degrading enzyme, has been pivotal by facilitating tumor invasion, angiogenesis, and metastasis.

View Article and Find Full Text PDF

In this edition of Gene's "Editor's Corner" we summarize the complex interactions of different molecular mechanisms behind the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). The topic is relevant, as the therapeutic options for HIE are limited, it is important to have as much knowledge as possible about the molecular processes underlying the disease. In the recent issue of Gene (Gene 952, 2025, 149363), Wang et al.

View Article and Find Full Text PDF