Encaging palladium(0) in layered double hydroxide: A sustainable catalyst for solvent-free and ligand-free Heck reaction in a ball mill.

Beilstein J Org Chem

National Engineering Research Center for Process Development of Active Pharmaceutical Ingredients, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, Zhejiang, China.

Published: August 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

In this paper, the synthesis of a cheap, reusable and ligand-free Pd catalyst supported on MgAl layered double hydroxides (Pd/MgAl-LDHs) by co-precipitation and reduction methods is described. The catalyst was used in Heck reactions under high-speed ball milling (HSBM) conditions at room temperature. The effects of milling-ball size, milling-ball filling degree, reaction time, rotation speed and grinding auxiliary category, which would influence the yields of mechanochemical Heck reactions, were investigated in detail. The characterization results of XRD, ICP-MS and XPS suggest that Pd/MgAl-LDHs have excellent textural properties with zero-valence Pd on its layers. The reaction results indicate that the catalyst could be utilized in HSBM systems to afford a wide range of Heck coupling products in satisfactory yields. Furthermore, this catalyst could be easily recovered and reused for at least five times without significant loss of catalytic activity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5564263PMC
http://dx.doi.org/10.3762/bjoc.13.160DOI Listing

Publication Analysis

Top Keywords

layered double
8
heck reactions
8
catalyst
5
encaging palladium0
4
palladium0 layered
4
double hydroxide
4
hydroxide sustainable
4
sustainable catalyst
4
catalyst solvent-free
4
solvent-free ligand-free
4

Similar Publications

Herein, 1,3,5-benzenetricarboxylate (BTC) intercalation and oxygen vacancy engineering are proposed to enhance the electrochemical performance of layered double hydroxide (LDH) nanosheets. The optimized LDH exhibits a remarkable capacity of 426 mAh g at 3 A g and 70% capacity retention after 15 000 cycles, attributed to improved ion transport, abundant active sites, and structural stability.

View Article and Find Full Text PDF

Controlling the Regioselectivity of Topochemical Reduction Reactions Through Sequential Anion Insertion and Extraction.

Angew Chem Int Ed Engl

September 2025

Department of Chemistry, Inorganic Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, OX1 3QR, UK.

Topochemical reduction of the n = 2 Ruddlesden-Popper oxide, LaSrCoRuO, yields LaSrCoRuO, a phase containing (Co/Ru)O squares which share corners to form 1D infinite double-chains. In contrast, fluorination of LaSrCoRuO yields the oxyfluoride LaSrCoRuOF, which can then be reduced to form LaSrCoRuOF. This reduced oxyfluoride is almost isoelectronic with LaSrCoRuO, but LaSrCoRuOF has a crystal structure in which the (Co/Ru)O squares are connected into 2D infinite sheets.

View Article and Find Full Text PDF

Minimally invasive pancreaticoduodenectomy is gaining success among surgeons also for the increasing use of robotic approach. Ideal candidates are patients with small, confined tumor and dilatated Wirsung duct which is a quite rare clinical conditions: in fact, most of minimally invasive pancreaticoduodenectomies are performed for periampullary cancer, easy to remove but with soft pancreatic remnant and tiny Wirsung duct. The result is the technical challenge of the pancreatico-enteric reconstructions.

View Article and Find Full Text PDF

Room temperature ionic liquids show great promise as electrolytes in various technological applications, such as energy storage or electrotunable lubrication. These applications are particularly intriguing due to the specific behavior of ionic liquids in nanoconfinement. While previous research has been focused on optimizing the required characteristics through the selection of electrolyte properties, the contribution of confining material properties in these systems has been largely overlooked.

View Article and Find Full Text PDF

Neuroinflammation, a vital protective response for tissue homeostasis, becomes a detrimental force when chronic and dysregulated, driving neurological disorders like Alzheimer's, Parkinson's, and Huntington's diseases. Potassium (K) channels maintain membrane potential and cellular excitability in neurons and glia within the intricate CNS signaling network. Neuronal injury or inflammation can disrupt K channel activity, leading to hyperexcitability and chronic pain.

View Article and Find Full Text PDF