Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Peptides offer enormous promise as vaccines to prevent and protect against many infectious and noninfectious diseases. However, to date, limited vaccine efficacy has been reported and none have been licensed for human use. Innovative ways to enhance their immunogenicity are being tested, but rational sequence modification as a means to improve immune responsiveness has been neglected. Our objective was to establish a two-step generic protocol to modify defined amino acids of a helical peptide epitope to create a superior immunogen. Peptide variants of p145, a conserved helical peptide epitope from the M protein of , were designed by exchanging one amino acid at a time, without altering their α-helical structure, which is required for correct antigenicity. The immunogenicities of new peptides were assessed in outbred mice. Vaccine efficacy was assessed in a skin challenge and invasive disease model. Out of 86 variants of p145, seven amino acid substitutions were selected and made the basis of the design for 18 new peptides. Of these, 13 were more immunogenic than p145; 7 induced Abs with significantly higher affinity for p145 than Abs induced by p145 itself; and 1 peptide induced more than 10,000-fold greater protection following challenge than the parent peptide. This peptide also only required a single immunization (compared with three immunizations with the parent peptide) to induce complete protection against invasive streptococcal disease. This study defines a strategy to rationally improve the immunogenicity of peptides and will have broad applicability to the development of vaccines for infectious and noninfectious diseases.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1700836DOI Listing

Publication Analysis

Top Keywords

vaccine efficacy
12
peptide
8
infectious noninfectious
8
noninfectious diseases
8
helical peptide
8
peptide epitope
8
variants p145
8
amino acid
8
parent peptide
8
p145
5

Similar Publications

The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.

View Article and Find Full Text PDF

Objective: To assess the safety of tumor necrosis factor inhibitors (TNFi) during pregnancy, specifically in relation to infant infection rates, vaccine efficacy, and vaccine-associated adverse events in infants exposed to TNFi in utero and through breast milk.

Data Sources: A comprehensive literature review was conducted using PubMed and Google Scholar. The review included retrospective studies, prospective studies, and systematic reviews published until June 2024, focusing on TNFi exposure during pregnancy and breastfeeding.

View Article and Find Full Text PDF

Count outcomes often occur in cluster randomized trials. Particularly in the context of epidemiology, the ratio of incidence rates has been used to assess the effectiveness of an intervention. In practice, cluster sizes typically vary across clusters, and sample size estimation based on a constant cluster size assumption may lead to underpowered studies.

View Article and Find Full Text PDF

Identification of multifunctional T-cell peptide epitopes for the development of DNA vaccines against dengue virus.

Hum Vaccin Immunother

December 2025

Beijing Institute of Tropical Medicine, Beijing Friendship Hospital, Capital Medical University, Beijing Key Laboratory for Research on Prevention and Treatment of Tropical Diseases, Beijing, China.

Dengue virus (DENV) is an important arthropod-borne virus that poses a global health threat, with half of the world's population at risk of infection. Currently, there is a lack of safe and effective vaccines for its prevention. Antibody-dependent enhancement (ADE) occurs when cross-reactive antibodies fail to neutralize heterologous DENV serotypes effectively, facilitating viral entry into Fc receptor-bearing cells and leading to more severe disease.

View Article and Find Full Text PDF

The Brucella abortus A19 attenuated live vaccine poses potential infection risks during practical applications and interferes with serological diagnostics, thereby affecting quarantine measures and the establishment of disease-free zones. Consequently, this study aimed to reduce its potential virulence, enhance its protective efficacy and differentiate it from wild-type strains by knocking out the immunosuppressive virulence gene btpB in the A19 strain. Using homologous recombination, we successfully obtained the A19ΔBtpB deletion strain.

View Article and Find Full Text PDF