Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Polylactide (PLA)/wood flour composite foam were prepared through a batch foaming process. The effect of the chain extender on the crystallization behavior and dynamic rheological properties of the PLA/wood flour composites were investigated as well as the crystal structure and cell morphology of the composite foams. The incorporation of the chain extender enhanced the complex viscosity and storage modulus of PLA/wood flour composites, indicating the improved melt elasticity. The chain extender also led to a decreased crystallization rate and final crystallinity of PLA/wood flour composites. With an increasing chain extender content, a finer and more uniform cell structure was formed, and the expansion ratio of PLA/wood flour composite foams was much higher than without the chain extender. Compared to the unfoamed composites, the crystallinity of the foamed PLA/wood flour composites was improved and the crystal was loosely packed. However, the new crystalline form was not evident.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5615654PMC
http://dx.doi.org/10.3390/ma10090999DOI Listing

Publication Analysis

Top Keywords

chain extender
24
pla/wood flour
24
flour composites
16
flour composite
12
composite foams
12
cell structure
8
flour
7
chain
6
extender
6
pla/wood
6

Similar Publications

With growing public attention to environmental issues and sustainable development, biodegradable bio-based plastics have attracted widespread interest. This study reveals the chemical-physical synergistic regulation mechanism of biodegradable PLA/PBAT blends through the synergistic modification of epoxidized natural rubber (ENR) and epoxy chain extender (ADR). Interfacial interaction analysis shows that PBAT tends to encapsulate ENR to form aggregates.

View Article and Find Full Text PDF

Due to the current limitations of boar semen cryopreservation systems, the effective restoration of sperm quality following thawing remains a significant challenge. This study investigates whether post-thaw boar sperm can uptake exogenous long-chain fatty acids (LCFAs) and utilize them for ATP generation, thereby sustaining linear motility and enhancing sperm vitality. Boar semen was diluted in extender solutions supplemented with varying concentrations of a lipid mixture (0, 0.

View Article and Find Full Text PDF

Mimic octopuses can freely alter their shape and color to imitate the natural enemies of predators and thus avoid predation. Herein, a shape-color dual-responsive polyurethane (PU) was designed by imitating the mimic octopuses. To acquire reversible deformation, crystalline polycaprolactone (PCL) was selected as the soft segment and switching phase of the PU, while uniformly distributed hydrogen bonds inside the PU served as the internal stress provider.

View Article and Find Full Text PDF

Design and Characterization of Curcumin-Modified Polyurethane Material with Good Mechanical, Shape-Memory, pH-Responsive, and Biocompatible Properties.

Biomolecules

July 2025

Key Laboratory of Chemo/Biosensing and Detection of Xuchang, Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Henan Joint International Research Laboratory of Nanomaterials for Energy and Catalysis, College of Chemical and Materials Engineering, Xuchang Uni

In the context of critical challenges in curcumin-modified polyurethane synthesis-including limited curcumin bioavailability and suboptimal biodegradability/biocompatibility-a novel polyurethane material (Cur-PU) with good mechanical, shape memory, pH-responsive, and biocompatibility was synthesized via a one-pot, two-step synthetic protocol in which HO-PCL-OH served as the soft segment and curcumin was employed as the chain extender. The experimental results demonstrate that with the increase in Cur units, the crystallinity of the Cur-PU material decreases from 32.6% to 5.

View Article and Find Full Text PDF

While strong polymeric adhesives are widely valued, their removal can present a significant challenge where substrate recycling is concerned. Recent advancements in "debond-on-demand" adhesives have shown promising enhancements in adhesive strength and debondability. However, they often face a choice between increased adhesive strength or the rate and degree of debonding.

View Article and Find Full Text PDF