Single-Color Digital PCR Provides High-Performance Detection of Cancer Mutations from Circulating DNA.

J Mol Diagn

Stanford Genome Technology Center, Stanford University, Palo Alto, California; Division of Oncology, Department of Medicine, Stanford University School of Medicine, Stanford, California. Electronic address:

Published: September 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We describe a single-color digital PCR assay that detects and quantifies cancer mutations directly from circulating DNA collected from the plasma of cancer patients. This approach relies on a double-stranded DNA intercalator dye and paired allele-specific DNA primer sets to determine an absolute count of both the mutation and wild-type-bearing DNA molecules present in the sample. The cell-free DNA assay uses an input of 1 ng of nonamplified DNA, approximately 300 genome equivalents, and has a molecular limit of detection of three mutation DNA genome-equivalent molecules per assay reaction. When using more genome equivalents as input, we demonstrated a sensitivity of 0.10% for detecting the BRAF V600E and KRAS G12D mutations. We developed several mutation assays specific to the cancer driver mutations of patients' tumors and detected these same mutations directly from the nonamplified, circulating cell-free DNA. This rapid and high-performance digital PCR assay can be configured to detect specific cancer mutations unique to an individual cancer, making it a potentially valuable method for patient-specific longitudinal monitoring.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6593258PMC
http://dx.doi.org/10.1016/j.jmoldx.2017.05.003DOI Listing

Publication Analysis

Top Keywords

digital pcr
12
cancer mutations
12
dna
9
single-color digital
8
circulating dna
8
pcr assay
8
mutations directly
8
cell-free dna
8
genome equivalents
8
specific cancer
8

Similar Publications

Background: Regulatory T cells (Tregs) are found to be critical for maintaining immune tolerance to self-antigens; however, their status in primary Sjögren's syndrome (pSS) remains unclear. We investigated alterations in the abundance of peripheral Tregs in a large pSS cohort and their implications for patients.

Methods: Levels of CD4+CD25+FOXP3+Treg cells in the peripheral blood of 624 patients with pSS, and 93 healthy controls (HCs) were detected using modified flow cytometry (FCM).

View Article and Find Full Text PDF

Quantitative diagnostic method to detect Gardnerella vaginalis by droplet digital PCR.

Pract Lab Med

September 2025

Department of Clinical Laboratory, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.

Background: Nucleic Acid Amplification Tests (NAAT) remain one of the most reliable methods for pathogen identification. Given the high false-negative rates associated with traditional staining and microscopic examination, the time-consuming nature and low sensitivity of bacterial culture methods, as well as the inability of conventional NAAT to achieve absolute quantification.

Methods: To achieve rapid and quantitative detection of , we selected the 23S rRNA gene as the target for identification and developed a droplet digital PCR detection method.

View Article and Find Full Text PDF

Donor-derived cell-free DNA (dd-cfDNA) has emerged as a valuable noninvasive biomarker for detecting allograft injury in solid organ transplantation. It is released into the bloodstream from the transplanted organ as a result of cell injury and immune activation, with baseline levels influenced by organ type, tissue turnover, and posttransplant physiological changes. Several analytical platforms are available, including quantitative polymerase chain reaction (PCR), digital droplet PCR, and next-generation sequencing, each differing in sensitivity, throughput, and reporting format.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are considered more stable than mRNA, but the impact of progressive thawing of biological samples after freezing as may happen during shipping delays has not been quantified. To address this, we utilized digital PCR to estimate the absolute concentrations of select miRNAs following progressive thawing of human plasma and maintenance at ambient temperature. Specifically, we quantified let-7b-3p, miR-144-5p, miR-150-5p, miR-517a-3p, miR-524-5p, and miR-1283, which have varying abundance in plasma.

View Article and Find Full Text PDF

While human epidermal growth factor receptor (HER2) has emerged as a tumor-agnostic biomarker, standard HER2 testing for anti-HER2 therapies using immunohistochemistry (IHC) and in situ hybridization (ISH) assays remains subjective, time-consuming, and often inaccurate. To address these limitations, an ultrafast and precise HER2 testing method is developed using Lab-On-An-Array (LOAA) digital real-time PCR (drPCR), a fully automated digital PCR enabling real-time absolute quantification. A multicenter study involving four independent breast cancer cohorts cross-validates the high diagnostic accuracy of drPCR-based HER2 assessment.

View Article and Find Full Text PDF