98%
921
2 minutes
20
The development of highly stable and efficient electrocatalysts for sluggish oxygen reduction reaction (ORR) is exceedingly significant for the commercialization of fuel cells but remains a challenge. We here synthesize a new nitrogen-doped biocarbon composite material (N-BC@CNP-900) as a nitrogen-containing carbon-based electrocatalyst for the ORR via facile all-solid-state multi-step pyrolysis of bioprotein-enriched enoki mushroom as a starting material, and inexpensive carbon nanoparticles as the inserting matrix and conducting agent at controlled temperatures. Results show that the N-BC@CNP-900 catalyst exhibits the best ORR electrocatalytic activity with an onset potential of 0.94 V ( reversible hydrogen electrode, RHE) and high stability. Meanwhile, this catalyst significantly exhibits good selectivity of the four-electron reaction pathway in an alkaline electrolyte. It is notable that pyridinic- and graphtic-nitrogen groups that play a key role in the enhancement of the ORR activity may be the catalytically active structures for the ORR. We further propose that the pyridinic-nitrogen species can mainly stabilize the ORR activity and the graphitic-nitrogen species can largely enhance the ORR activity. Besides, the addition of carbon support also plays an important role in the pyrolysis process, promoting the ORR electrocatalytic activity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5456573 | PMC |
http://dx.doi.org/10.3390/ma9010001 | DOI Listing |
Dalton Trans
September 2025
University of Belgrade, Faculty of Physical Chemistry, Studentski trg 12-16, 11158 Belgrade, Serbia.
Developing efficient, low-cost catalysts for oxygen reduction and evolution reactions (ORR and OER) is key to advancing metal-air batteries and regenerative fuel cells. In this study, nitrogen-doped binary metal (Mn and Ni) oxides (N-BMOs) and Pt-decorated N-BMOs were synthesised using three methods and tested as ORR and OER catalysts in alkaline media. Their physicochemical properties were characterised by XRD, N-sorption, TEM, and XPS, while their electrochemical performance was evaluated using voltammetry and impedance spectroscopy.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
State Key Laboratory of Heavy Oil Processing, China University of Petroleum (Beijing), Changping, 102249, China. Electronic address:
Carbon-based catalysts with free-standing structure are essential for rechargeable zinc-air battery as electrodes, which can avoid the side effects brought by organic binder. However, the current preparation methods still can be improved for faster preparation process and morphology control. In this study, we reported a fabrication strategy of self-standing carbon catalyst loaded with CoFe nanoparticles and carbon nanotube as air electrodes for liquid rechargeable zinc-air battery.
View Article and Find Full Text PDFJ Colloid Interface Sci
September 2025
School of Material Electronics and Energy Storage, Zhongyuan University of Technology, Zhengzhou 450007, China. Electronic address:
Developing single-atom catalysts (SACs) with dense active sites and universal synthesis strategies remains a critical challenge. Herein, we present a scalable and universal strategy to synthesize high-density transition metal single-atom sites, anchored in nitrogen-doped porous carbon (M-SA@NC, M = Fe, Co, Ni) and investigate their oxygen reduction reaction (ORR) catalytic activity for flexible Zn-air batteries (ZABs). Using a facile coordination-pyrolysis strategy, atomically dispersed M-N sites with high metal loading are achieved.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130012, P.R. China.
Neutral aqueous Zn-air batteries (ZABs), while promising for extended lifespans and recyclability compared to alkaline systems, are hindered by sluggish kinetics that limit energy efficiency and power output. Here, we report an effective approach to construct a photo-assisted near-neutral ZAB based on a photo-responsive titanium silicalite-1 zeolite (TS-1). The incorporation of Ru active centers into the 3D porous architecture of TS@C (Ru@TS@C), which exhibits remarkably enhanced electronic conduction, creates interconnected conductive pathways.
View Article and Find Full Text PDFSmall
September 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing, 211816, China.
Integrating cross-scale active sites-single atoms (SA), atom pairs (AP), and nanoparticles-into a unified catalytic system presents a promising strategy for advancing oxygen reduction reaction (ORR), an extremely important process in energy conversion. However, the synergistic interplay among these sites and their mechanistic roles remains poorly understood. Here, we report a novel catalyst (3) featuring Zn, bonded Fe-Co with dual-oxygen ligands, and FeCo nanoparticles, synthesized via pyrolysis of a metal matrix-engineered metal-organic framework (MOF).
View Article and Find Full Text PDF