Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Common ragweed ( L.) is an invasive, wind-pollinated plant nearly ubiquitous in disturbed sites in its eastern North American native range and present across growing portions of Europe, Africa, Asia, and Australia. Phenotypic divergence between European and native-range populations has been described as rapid evolution. However, a recent study demonstrated major human-mediated shifts in ragweed genetic structure before introduction to Europe and suggested that native-range genetic structure and local adaptation might fully explain accelerated growth and other invasive characteristics of introduced populations. Genomic differentiation that potentially influenced this structure has not yet been investigated, and it remains unclear whether substantial admixture during historical disturbance of the native range contributed to the development of invasiveness in introduced European ragweed populations. To investigate fine-scale population genetic structure across the species' native range, we characterized diallelic SNP loci via a reduced-representation genotyping-by-sequencing (GBS) approach. We corroborate phylogeographic domains previously discovered using traditional sequencing methods, while demonstrating increased power to resolve weak genetic structure in this highly admixed plant species. By identifying exome polymorphisms underlying genetic differentiation, we suggest that geographic differentiation of this important invasive species has occurred more often within pathways that regulate growth and response to defense and stress, which may be associated with survival in North America's diverse climatic regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5513308PMC
http://dx.doi.org/10.1002/ece3.2143DOI Listing

Publication Analysis

Top Keywords

genetic structure
16
native range
12
geographic differentiation
8
north american
8
common ragweed
8
genetic
5
structure
5
population genomic
4
genomic basis
4
basis geographic
4

Similar Publications

Genome-wide identification analysis of aldo-keto reductase gene family in cotton and GhAKR40 role in salt stress tolerance.

Funct Integr Genomics

September 2025

Zhengzhou Research Base, State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Zhengzhou University/Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Zhengzhou, China.

In this study, a comprehensive genome-wide identification and analysis of the aldo-keto reductase (AKR) gene family was performed to explore the role of Gossypium hirsutumAKR40 under salt stress in cotton. A total of 249 AKR genes were identified with uneven distribution on the chromosomes in four cotton species. The diversity and evolutionary relationship of the cotton AKR gene family was identified using physio-chemical analysis, phylogenetic tree construction, conserved motif analysis, chromosomal localization, prediction of cis-acting elements, and calculation of evolutionary selection pressure under 300 mM NaCl stress.

View Article and Find Full Text PDF

Euglena sanguinea (Ehrenberg 1831) is one of the earliest reported species within the genus Euglena. Its prolific proliferation leading to red algal bloom has garnered significant scientific attention due to its ecological and environmental impacts. Despite this, research on E.

View Article and Find Full Text PDF

Klebsiella oxytoca is a N-fixing bacterium whose nif (nitrogen fixation) gene expression is controlled by the two antagonistic regulatory proteins NifA and NifL encoded by the nifLA operon. NifA is a transcriptional activator, while NifL inhibits the transcriptional activity of NifA. In order to develop an improved K.

View Article and Find Full Text PDF

Preparation and characterization of a Llama VHH-hFc chimeric antibody recognizing conserved neutralization epitope of H5N1 hemagglutinin with high affinity.

Arch Microbiol

September 2025

Department of Infectious Disease, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 639, Zhizaoju Road, Huangpu District, Shanghai, 200011, China.

Highly pathogenic avian influenza (HPAI) H5N1 virus poses a continuing global public health threat due to its outbreaks in poultry farms and zoonotic transmission from birds to humans. In the quest of effective therapeutics against H5N1 infection, antibodies with broad neutralizing activity have attracted significant attention. In this study, we employed a phage display technique to select and identify VHH antibodies with specific neutralizing activity against H5N1 hemagglutinin (HA) from an immune llama-derived antibody library.

View Article and Find Full Text PDF

Endophytic fungi are nonpathogenic fungi that live symbiotically in the interior of healthy plant tissues and form mutualistic associations with their hosts. These fungi are critically involved in promoting plant development, strengthening plant uptake of nutrients, and improving plant resistance to biotic and abiotic stress conditions. Endophytic fungi improve plant growth by synthesizing phytohormones (e.

View Article and Find Full Text PDF