Templated dewetting: designing entirely self-organized platforms for photocatalysis.

Chem Sci

Department of Materials Science , Institute for Surface Science and Corrosion WW4-LKO , University of Erlangen-Nuremberg, Martensstraße 7 , D-91058 Erlangen , Germany . Email: ; ; Tel: +49 9131 8527575.

Published: December 2016


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Formation and dispersion of metal nanoparticles on oxide surfaces in site-specific or even arrayed configuration are key in various technological processes such as catalysis, photonics, electrochemistry and for fabricating electrodes, sensors, memory devices, and magnetic, optical, and plasmonic platforms. A crucial aspect towards an efficient performance of many of these metal/metal oxide arrangements is a reliable fabrication approach. Since the early works on graphoepitaxy in the 70s, solid state dewetting of metal films on patterned surfaces has been much explored and regarded as a most effective tool to form defined arrays of ordered metal particles on a desired substrate. While templated dewetting has been studied in detail, particularly from a mechanistic perspective on lithographically patterned Si surfaces, the resulting outstanding potential of its applications on metal oxide semiconductors, such as titania, has received only limited attention. In this perspective we illustrate how dewetting and particularly templated dewetting can be used to fabricate highly efficient metal/TiO photocatalyst assemblies for green hydrogen evolution. A remarkable advantage is that the synthesis of such photocatalysts is completely based on self-ordering principles: anodic self-organized TiO nanotube arrays that self-align to a highest degree of hexagonal ordering are an ideal topographical substrate for a second self-ordering process, that is, templated-dewetting of sputter-deposited metal thin films. The controllable metal/semiconductor coupling delivers intriguing features and functionalities. We review concepts inherent to dewetting and particularly templated dewetting, and outline a series of effective tools that can be synergistically interlaced to reach fine control with nanoscopic precision over the resulting metal/TiO structures (in terms of high ordering, size distribution, site specific placement, alloy formation) to maximize their photocatalytic efficiency. These processes are easy to scale up and have a high throughput and great potential to be applied to fabricate not only (photo)catalytic materials but also a large palette of other functional nanostructured elements and devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5450593PMC
http://dx.doi.org/10.1039/c6sc02555bDOI Listing

Publication Analysis

Top Keywords

templated dewetting
16
patterned surfaces
8
dewetting templated
8
dewetting
6
metal
5
templated
4
dewetting designing
4
designing entirely
4
entirely self-organized
4
self-organized platforms
4

Similar Publications

Water-directed pinning is key to tau prion formation.

Proc Natl Acad Sci U S A

May 2025

Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106.

Tau forms fibrillar aggregates that are pathological hallmarks of a family of neurodegenerative diseases known as tauopathies. The synthetic replication of disease-specific fibril structures is a critical gap for developing diagnostic and therapeutic tools. This study debuts a strategy of identifying a critical and minimal folding motif in fibrils characteristic of tauopathies and generating seeding-competent fibrils from the isolated tau peptides.

View Article and Find Full Text PDF

Local surface curvature and effects associated with a large surface-to-volume ratio are of great importance in thin films and can influence the character of temperature-induced phase transitions. In particular, these effects have a substantial influence on the transformation of thin multilayers into nano-alloys where the introduction of template-assisted patterning can shift the transformation temperature, induce a crystallographic texture, and change the phase composition. In this work, we study the phase transformations in patterned Fe/Pd multilayers leading to the formation of FePd alloys.

View Article and Find Full Text PDF

Suspended nanoscale one-dimensional (1D) arrays have attracted substantial interest due to their promising applications in nanodevice fabrication. In this study, we propose a novel strategy for fabricating precisely positioned, long-range ordered nanowire arrays by controlling the directional liquid transport of conical fiber arrays (CFAs) on asymmetrically modified silicon templates patterned with periodic spindle-shaped micropillars. The intrinsic properties of CFAs and the tailored wettability of silicon templates play critical roles in nanowire fabrication.

View Article and Find Full Text PDF

Bilayer graphene ribbons (GRs) hold great promise for the fabrication of next-generation nanodevices, thanks to unparalleled electronic properties, especially the tunable bandgap in association with twist angle, ribbon width, edge structure, and interlayer coupling. A common challenge in manufacturing bilayer GRs via templated chemical vapor deposition (CVD) approach is uncontrollable dewetting of micro- and nano-scaled patterned metal substrates. Herein, a confined CVD synthetic strategy of bilayer GR arrays is proposed, by utilizing the bifunctional Ni as a buffered adhesion layer to regulate the anisotropic dewetting of metal film in the V-groove and as a carbon-dissolution regulated metal to initiate the bilayer nucleation.

View Article and Find Full Text PDF

Template-Guided Nondeterministic Assembly of Organosilica Nanodots for Multifunctional Physical Unclonable Functions.

ACS Appl Mater Interfaces

January 2025

Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.

Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.

View Article and Find Full Text PDF