98%
921
2 minutes
20
Replicated ecological studies in marine reserves and associated unprotected areas are valuable in examining top-down impacts on communities and the ecosystem-level effects of fishing. We carried out experimental studies in two temperate marine reserves to examine these top-down influences on shallow subtidal reef communities in northeastern New Zealand. Both reserves examined are known to support high densities of predators and tethering experiments showed that the chance of predation on the dominant sea urchin, Evechinus chloroticus, within both reserves was approximately 7 times higher relative to outside. Predation was most intense on the smallest size class (30-40 mm) of tethered urchins, the size at which urchins cease to exhibit cryptic behaviour. A high proportion of predation on large urchins could be attributed to the spiny lobster, Jasus edwardsii. Predation on the smaller classes was probably by both lobsters and predatory fish, predominantly the sparid Pagrus auratus. The density of adult Evechinus actively grazing the substratum in the urchin barrens habitat was found to be significantly lower at marine reserve sites (2.2±0.3 m) relative to non-reserve sites (5.5±0.4 m). There was no difference in the density of cryptic juveniles between reserve and non-reserve sites. Reserve populations were more bimodal, with urchins between 40 and 55 mm occurring at very low numbers. Experimental removal of Evechinus from the urchin barrens habitat over 12 months lead to a change from a crustose coralline algal habitat to a macroalgal dominated habitat. Such macroalgal habitats were found to be more extensive in both reserves, where urchin densities were lower, relative to the adjacent unprotected areas that were dominated by urchin barrens. The patterns observed provide evidence for a top-down role of predators in structuring shallow reef communities in northeastern New Zealand and demonstrate how marine reserves can reverse the indirect effects of fishing and re-establish community-level trophic cascades.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-002-0920-x | DOI Listing |
J R Soc Interface
September 2025
School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, AZ, USA.
The paradox of enrichment stipulates that increasing the resources available to the prey population can lead to instability and a higher likelihood of population fluctuations. We study the converse situation where the prey's environment is degrading and ask if the dynamical interplay between this degradation and stochasticity can be beneficial to the stabilization of the prey population. The underlying systems are non-autonomous and subject to noise.
View Article and Find Full Text PDFPLoS One
September 2025
Sciences Pour l'Environnement Unit, Université de Corse Pasquale Paoli, Corte, France.
No-take zones (NTZs) are expected to rebuild exploited fish populations, yet their performance is rarely assessed with species-level indicators. We quantified the reserve effect of the Nonza-San Fiurenzu NTZ (24.2 km2) inside the Marine Natural Park of Cap Corse and Agriate (north-western Mediterranean) and simultaneously compared the effectiveness of two underwater visual census (UVC).
View Article and Find Full Text PDFWater Res
August 2025
School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA.
The source area of the Yangtze River (SAYR), part of the Tibetan Plateau, is an ecologically fragile alpine region sensitive to climate change. Current research has predominantly examined hydrological and ecological responses as isolated systems, failing to address the coupled mechanisms through which permafrost degradation mediates water-carbon interactions. In this study, we used a fully coupled eco-hydrological model that integrates permafrost processes, along with multi-source remote sensing data, experimental monitoring, and machine learning, to quantify the water retention and carbon sequestration capacity over the past 20 years.
View Article and Find Full Text PDFMicroorganisms
August 2025
The Guangxi Key Laboratory of Beibu Gulf Marine Biodiversity Conservation, College of Marine Sciences, Beibu Gulf University, Qinzhou 535011, China.
The Sanniang Bay (SNB) and Dafeng River Estuary (DFR) in the Northern Beibu Gulf, China, are critical habitats for the Indo-Pacific humpback dolphin (). However, whether and how the decreased dissolved oxygen (DO) has happened in bottom seawater remains poorly understood. This study investigated DO depletion and microbial community responses using a multidisciplinary approach.
View Article and Find Full Text PDF