98%
921
2 minutes
20
Background: Calcium oxalate crystals, which are found in many organs of plants, have different morphological forms: as druses, prism, styloids, raphides and crystal sand. In this study, the distribution, type and specific location of calcium oxalate crystals in the leaves and stems of the eight species of poisonous plants and one species of nonpoisonous plant were investigated with light microscopy. During study special attention was given to the possible correlation between the presence and types of calcium oxalate crystals and toxic plant organs. The plants examined in this study were Hedera helix L. (Araliaceae), Aristolochia clematitis L. (Aristolochiaceae), Humulus lupulus L. (Cannabaceae), Saponaria officinalis L. (Caryophyllaceae), Chelidonium majus L. (Papaveraceae), Hypericum perforatum L. (Hypericaceae), Tribulus terrestris L. (Zygophyllaceae), Cynanchum acutum L. (Asclepiadaceae), and Nerium oleander L. (Apocynaceae).
Results: Three types of crystals: druses, prismatic crystals and crystal sands were observed. Druses were identified in the leaves and stems of six species of studied plants. In contrast to druses, crystal sands and prismatic crystals were rare. Prismatic crystals were observed in the leaf mesophlly cells of both Nerium oleander and Cynanchum acutum. However, crystal sands were observed only in the pith tissue of Humulus lupulus. On the other hand, leaves and stems of Chelidonium majus, Aristolochia clematitis and Hypericum perforatum were devoid of crystals.
Conclusion: There is no absolute correlation between the presence and type of calcium oxalate crystals and toxic plant organs. However druse crystals may function as main irritant in toxic organs of the plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5432768 | PMC |
http://dx.doi.org/10.1186/1999-3110-55-32 | DOI Listing |
PLoS One
September 2025
Department of Urology, Kanazawa Medical University, Kahoku, Ishikawa, Japan.
Calcium oxalate (CaOx) stones are prevalent in urinary tract stone disease. While their formation can be induced in rats by administering ethylene glycol and vitamin D, the initial nucleation and formation processes are unclear. Here, we aimed to determine where CaOx crystals initially form, examine the associated histological and morphological changes, and clarify the genes whose expression varies at those sites and their function.
View Article and Find Full Text PDFUrolithiasis
September 2025
Graduate School of Engineering, The University of Osaka, 2-1, Yamadaoka, Suita, 565- 0871, Japan.
Kidney stones have a high recurrence rate-10% within 5 years and 50% within 10. Crystalluria reflects the urinary physicochemical environment and may serve as a recurrence marker, but key crystals like brushite are rarely detected under ambient conditions. This study aimed to identify novel recurrence markers by inducing crystallization through urine cooling and analyzing crystal composition.
View Article and Find Full Text PDFJ Nephrol
September 2025
Italian Society of General Medicine (SIMG), COMEGEN Primary Care Physicians Cooperative, Naples, Italy.
Background: Kidney stone formation is driven by an imbalance between lithogenic substances and crystallization inhibitors. Current guidelines recommend a 24-h urine collection in patients with kidney stone disease to assess the risk of stone formation and monitor therapy compliance. However, real-world data on adherence to these guidelines remain limited and outdated.
View Article and Find Full Text PDFCommun Biol
September 2025
Guangdong Provincial Key Laboratory of Urological Diseases, Department of Urology, Guangdong Engineering Research Center of Urinary Minimally Invasive Surgery Robot and Intelligent Equipment, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guan
Calcium salt deposition in the kidney induces epithelial-to-mesenchymal transition (EMT) in renal tubular epithelial cells, which is the pathological basis for the progression to renal fibrosis in patients with renal stones; however, effective drugs to prevent and treat this disease have not been adequately investigated. In this study, we conducted a comprehensive analysis of fibrosis-related core genes by utilizing bioinformatics on RNA-seq data, along with web database information. Additionally, we designed both in vivo and in vitro experiments to elucidate the mechanisms and signaling pathways through which Desmodium styracifolium polysaccharides (Ds) mitigate renal fibrosis induced by nephrolithiasis.
View Article and Find Full Text PDFBiomolecules
August 2025
Department of Physiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA.
The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has brought to light unexpected complications beyond respiratory illness, including effects on kidney function and a potential link to kidney stone disease (KSD). This review proposes a novel framework connecting COVID-19-induced epigenetic reprogramming to disruptions in mitochondrial sulfur metabolism and the pathogenesis of kidney stones. We examine how SARS-CoV-2 interferes with host methylation processes, leading to elevated homocysteine (Hcy) levels and impairment of the trans-sulfuration pathway mechanisms particularly relevant in metabolic disorders such as homocystinuria.
View Article and Find Full Text PDF