98%
921
2 minutes
20
Lithium-ion battery (LIB) is a revolutionary step in the electric energy storage technology for making green environment. In the present communication, a LIB anode material was constructed by using graphene/polyaniline/CuS nanocomposite (GR/PANI/CuS NC) as a high-performance electrode. Initially, pure covellite CuS nanoplates (NPs) of the hexagonal structure were synthesized by hydrothermal route and then GR/PANI/CuS NC was fabricated by in-situ polymerization of aniline in the presence of CuS NPs and graphene nanosheets (GR NSs) as host matrix. GR/PANI/CuS NC-based LIB has shown the superior reversible current capacity of 1255mAhg, a high cycling stability with more than 99% coulombic efficiency over 250 cycles even at a high current density of 5Ag, low volume expansion, and excellent power capabilities. Galvanostatic charge/discharge tests and cyclic voltammetry analysis were used to investigate electrochemical properties. The electrochemical test proves that GR/PANI/CuS NC is promising anode material for LIB. The crystal phases and purity of the GR/PANI/CuS NC were confirmed by X-ray diffraction (XRD). Scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX) and X-ray photoelectron spectroscopy (XPS) were employed to examine the morphology, size, chemical composition, and phase structure of the synthesized GR/PANI/CuS NC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jcis.2017.04.082 | DOI Listing |
Anal Chem
September 2025
Residues and Resource Reclamation Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, CleanTech One, Singapore 637141, Singapore.
Solid-contact ion-selective electrodes often struggle with potential stability during and between measurements. The potential drift significantly limits the reliability of the signal readout of ion-selective electrodes (ISEs), thereby limiting their practical applications. In this work, preadding a solution with the primary ion into the ion-selective membrane cocktail before drop-casting the ISEs was used to investigate the nature of ISEs' potential stability.
View Article and Find Full Text PDFJ Org Chem
September 2025
Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
A novel electrochemical/Fe dual-catalyzed perfluoroalkylation-thiolization of alkenes under mild conditions has been developed. This protocol utilizes commercially available reagents, cheap electrodes, and simple equipment. Diverse polyfunctionalized perfluoroalkyl-substituted derivatives were successfully obtained in a direct and efficient way with a broad substrate scope and excellent functional group tolerance.
View Article and Find Full Text PDFPLoS Comput Biol
September 2025
Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey, United States of America.
Research into the mechanisms underlying neuromodulation by tES using in-vivo animal models is key to overcoming experimental limitations in humans and essential to building a detailed understanding of the in-vivo consequences of tES. Insights from such animal models are needed to develop targeted and effective therapeutic applications of non-invasive brain stimulation in humans. The sheer difference in scale and geometry between animal models and the human brain contributes to the complexity of designing and interpreting animal studies.
View Article and Find Full Text PDFNanomicro Lett
September 2025
Department of Mechanical, Aerospace & Biomedical Engineering, University of Tennessee, Knoxville, Knoxville, TN, 37996, USA.
3D printing, as a versatile additive manufacturing technique, offers high design flexibility, rapid prototyping, minimal material waste, and the capability to fabricate complex, customized geometries. These attributes make it particularly well-suited for low-temperature hydrogen electrochemical conversion devices-specifically, proton exchange membrane fuel cells, proton exchange membrane electrolyzer cells, anion exchange membrane electrolyzer cells, and alkaline electrolyzers-which demand finely structured components such as catalyst layers, gas diffusion layers, electrodes, porous transport layers, and bipolar plates. This review provides a focused and critical summary of the current progress in applying 3D printing technologies to these key components.
View Article and Find Full Text PDFDiscov Nano
September 2025
RRU 709, Department of Clinical Pharmacology, Advanced Centre for Training, Research and Education in Cancer, Kharghar, Navi Mumbai, India.
In this study, we investigated the influence of ultrasonic frequency during ultrasound-assisted chemical bath deposition (UCBD) on the surface morphology and electrochemical performance of CoO:MnO@CoMnO composite flexible electrodes for supercapacitor applications. By systematically varying the ultrasonic frequency (1.0-2.
View Article and Find Full Text PDF