Seasonal variation in environmental DNA in relation to population size and environmental factors.

Sci Rep

Durrell Institute of Conservation and Ecology, School of Anthropology and Conservation, University of Kent, Marlowe Building, Canterbury, Kent, CT2 7NR, UK.

Published: April 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Analysing DNA that organisms release into the environment (environmental DNA, or eDNA) has enormous potential for assessing rare and cryptic species. At present the method is only reliably used to assess the presence-absence of species in natural environments, as seasonal influences on eDNA in relation to presence, abundance, life stages and seasonal behaviours are poorly understood. A naturally colonised, replicated pond system was used to show how seasonal changes in eDNA were influenced by abundance of adults and larvae of great crested newts (Triturus cristatus). Peaks in eDNA were observed in early June when adult breeding was coming to an end, and between mid-July and mid-August corresponding to a peak in newt larval abundance. Changes in adult body condition associated with reproduction also influenced eDNA concentrations, as did temperature (but not rainfall or UV). eDNA concentration fell rapidly as larvae metamorphosed and left the ponds. eDNA concentration may therefore reflect relative abundance in different ponds, although environmental factors can affect the concentrations observed. Nevertheless, eDNA surveys may still represent an improvement over unadjusted counts which are widely used in population assessments but have unreliable relationships with population size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5385492PMC
http://dx.doi.org/10.1038/srep46294DOI Listing

Publication Analysis

Top Keywords

environmental dna
8
population size
8
environmental factors
8
edna
8
edna concentration
8
seasonal
4
seasonal variation
4
environmental
4
variation environmental
4
dna relation
4

Similar Publications

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

The effect of non-functionalized polystyrene nanoparticles (PS-NPs) with diameters of 29, 44, and 72 nm on plasmid DNA integrity and the expression of genes involved in the architecture of chromatin was investigated in human peripheral blood mononuclear cells (PBMCs). The cells were incubated with PS-NPs at concentrations ranging from 0.001 to 100 µg/mL for 24 hours.

View Article and Find Full Text PDF

Waterborne viruses have caused outbreaks of related diseases and threaten human health, and advanced oxidation processes (AOPs), as clean and efficient technologies, have received widespread attention for their excellent performance in inactivating viruses. However, heterogeneity in susceptibility of structurally distinct viruses to various reactive oxygen species (ROS) is unclear. This study first measured the heterogeneity in inactivation kinetics and biological mechanisms of four typical viral surrogates (MS2, phi6, phix174, and T4) to various ROS by visible light catalysis.

View Article and Find Full Text PDF

Case Report: Sequential treatment with rituximab and belimumab in a pediatric patient of type 1 diabetes mellitus complicated with systemic lupus erythematosus.

Front Pediatr

August 2025

Department of Rheumatology and Immunology, Tianjin Children's Hospital (Children's Hospital, Tianjin University), Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China.

Type 1 diabetes mellitus (T1DM) and systemic lupus erythematosus (SLE) are both autoimmune diseases influenced by multiple genetic and environmental factors, but rarely coexist. This case describes a 13-year-old girl with early onset of T1DM who was diagnosed with SLE 12 years later, highlighting diagnostic and therapeutic challenges, particularly in distinguishing kidney involvement and management without exacerbating hyperglycemia. The patient presented with edema of the eyelids and lower limbs.

View Article and Find Full Text PDF

Background: Prospective studies suggest that prenatal exposure to chemical neurotoxicants and maternal stress increase risk for psychiatric problems. However, most studies have focused on childhood outcomes, leaving adolescence-a critical period for the emergence or worsening of psychiatric symptoms-relatively understudied. The complexity of prenatal coexposures and adolescent psychiatric comorbidities, particularly among structurally marginalized populations with high exposure burdens, remains poorly understood.

View Article and Find Full Text PDF