Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Two-dimensional (2D) circular shape nanostructures (e.g., "nano-coins") are ubiquitously present in thylakoids and grana within chloroplasts of plant cells in nature. The design and fabrication of 2D nano-coins with controlled sizes and thicknesses yet remain challenging tasks. Herein, we present a noncrystallization approach to achieve 2D nano-coins from assemblies of a set of zwitterionic giant surfactants. Distinguished from traditional crystallization approaches where the 2D nanostructures with specific crystallographic symmetries are fabricated, the noncrystallization assembly of giant surfactants results in 2D nano-coins that are derived from the separation of assembled 3D multiple lamellar cylindrical colloids with uniform diameters. The diameters and thicknesses of these nano-coins can be readily tailored by varying the molecular length of giant surfactants' tails. The formation of 2D nano-coins or 3D cylindrical colloid suprastructures is controlled by tuning the pH value of added selective solvents. This new strategy opens a door for controlling the shape, size, and size distribution of assembled nanostructures with different hierarchies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.7b01275 | DOI Listing |