98%
921
2 minutes
20
Wild potato species are useful sources of allelic diversity and loci lacking in the cultivated potato. In these species, the presence of anthocyanins in leaves has been associated with a greater tolerance to cold stress. However, the molecular mechanisms that allow potatoes to withstand cold exposure remain unclear. Here, we show that the expression of AN2, a MYB transcription factor, is induced by low temperatures in wild, cold-tolerant Solanum commersonii, and not in susceptible Solanum tuberosum varieties. We found that AN2 is a paralog of the potato anthocyanin regulator AN1, showing similar interaction ability with basic helix-loop-helix (bHLH) co-partners. Their sequence diversity resulted in a different capacity to promote accumulation of phenolics when tested in tobacco. Indeed, functional studies demonstrated that AN2 is less able to induce anthocyanins than AN1, but nevertheless it has a strong ability to induce accumulation of hydroxycinnamic acid derivatives. We propose that the duplication of R2R3 MYB genes resulted in subsequent subfunctionalization, where AN1 specialized in anthocyanin production and AN2 conserved the ability to respond to cold stress, inducing mainly the synthesis of hydroxycinnamic acid derivatives. These results contribute to understanding the evolutionary significance of gene duplication on phenolic compound regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/pce.12966 | DOI Listing |
Food Sci Nutr
September 2025
Department of Biology, College of Natural and Computational Sciences Mizan-Tepi University Tepi Ethiopia.
Climatic challenges increasingly threaten global food security, necessitating crops with enhanced multi-stress resilience. Through systematic transcriptomic analysis of 100 wheat genotypes under heat, drought, cold, and salt stress, we identified 3237 differentially expressed genes (DEGs) enriched in key stress-response pathways. Core transcription factors (, , ) and two functional modules governing abiotic tolerance were characterized.
View Article and Find Full Text PDFPlant Sci
September 2025
Institute of Chinese Medicinal Materials, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, 210095, PR China. Electronic address:
Although floral morphology in ornamental chrysanthemums has been widely investigated, its genetic basis in medicinal varieties such as Chrysanthemum morifolium cv. 'Hangju' remains largely unexplored, despite its direct relevance to both capitulum development and medicinal quality. To address this gap, we performed transcriptome profiling of ray and disc florets from wild-type and mutant plants, which led to the identification of two MYB-related transcription factor genes, CmDIV-like and CmRAD1, as differentially expressed and potentially associated with altered floral symmetry.
View Article and Find Full Text PDFmBio
September 2025
Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China.
Unlabelled: Fungal degradation of cellulose facilitates the sustainable harnessing of biosphere energy and carbon cycling. is one of the basidiomycetes with the largest number of hydrolytic enzymes in its genome. The mycelium of degrades cellulose through the production of substantial amounts of cellulase, enabling the absorption of carbon sources and nutrients essential for fruiting body development.
View Article and Find Full Text PDFJ Pineal Res
September 2025
School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), School of Tropical Agriculture and Forestry, Hainan University, Sanya, China.
Melatonin, a multifunctional signalling molecule in plants, has been increasingly recognized for its role in improving stress tolerance, regulating hormone signalling, and enhancing crop productivity. Exogenous melatonin application represents a promising strategy to enhance crop productivity under global agricultural challenges. This study aimed to investigate the physiological and molecular mechanisms by which melatonin improves yield in Brassica napus.
View Article and Find Full Text PDFPlant Cell Physiol
September 2025
Southwest Landscape Architecture Engineering Research Center of National Forestry and Grassland Administration, College of Landscape Architecture and Horticulture Science, Southwest Forestry University, Kunming 650224, China.
To explore the role of WRKY transcription factors in resistance, a WRKY15 homologous gene, CsWRKY15, and its promoter were isolated from tea plants when intercropped with chestnut. CsWRKY15 expression was significantly induced by ethephon, polyethylene glycol (PEG), and low temperature. Notably, its expression was strongly induced by exogenous gibberellic acid (GA3).
View Article and Find Full Text PDF