98%
921
2 minutes
20
Background: Neurophysiological and behavioral processes regulated by hypocretin (orexin) are severely affected in depression. However, alterations in hypocretin have so far not been studied in the human brain. We explored the hypocretin system changes in the hypothalamus and cortex in depression from male and female subjects.
Methods: We quantified the differences between depression patients and well-matched controls, in terms of hypothalamic hypocretin-1 immunoreactivity (ir) and hypocretin receptors (Hcrtr-receptors)-mRNA in the anterior cingulate cortex (ACC) and dorsolateral prefrontal cortex. In addition, we determined the alterations in the hypocretin system in a frequently used model for depression, the chronic unpredictable mild stress (CUMS) rat.
Results: i) Compared to control subjects, the amount of hypocretin-immunoreactivity (ir) was significantly increased in female but not in male depression patients; ii) hypothalamic hypocretin-ir showed a clear diurnal fluctuation, which was absent in depression; iii) male depressive patients who had committed suicide showed significantly increased ACC Hcrt-receptor-2-mRNA expression compared to male controls; and iv) female but not male CUMS rats showed a highly significant positive correlation between the mRNA levels of corticotropin-releasing hormone and prepro-hypocretin in the hypothalamus, and a significantly increased Hcrt-receptor-1-mRNA expression in the frontal cortex compared to female control rats.
Conclusions: The clear sex-related change found in the hypothalamic hypocretin-1-ir in depression should be taken into account in the development of hypocretin-targeted therapeutic strategies.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5405188 | PMC |
http://dx.doi.org/10.1016/j.ebiom.2017.03.043 | DOI Listing |
Front Neurosci
August 2025
Beijing Life Science Academy, Beijing, China.
Hypocretin, also known as orexin, is a hypothalamic neuropeptide that regulates essential physiological processes including arousal, energy metabolism, feeding behavior, and emotional states. Through widespread projections and two G-protein-coupled receptors-HCRT-1R and HCRT-2R-the hypocretin system exerts diverse modulatory effects across the central nervous system. The role of hypocretin in maintaining wakefulness is well established, particularly in narcolepsy type 1 (NT1), where loss of hypocretin neurons leads to excessive daytime sleepiness and cataplexy.
View Article and Find Full Text PDFPharmacol Res Perspect
October 2025
Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA.
Exogenous cannabinoids have long been known to promote eating. However, the underlying mechanisms have not been completely elucidated, which is critical to understanding their utility. The orexin/hypocretin (OH) system of the lateral hypothalamus (LHA) has known anatomical, biochemical, and physiological interactions with the endocannabinoid system, and has an established role in promoting appetitive behavior; yet, it is still unknown if the OH system mediates food intake following cannabinoid administration.
View Article and Find Full Text PDF: Sepsis (life-threatening organ dysfunction caused by a dysregulated host response to infection) causes millions of deaths worldwide annually. Sepsis-induced changes in brain regulatory functions remain understudied. Previous work demonstrated that cecal ligation and puncture (CLP, a murine model of sepsis) affected physiologic variables and serum cytokines and hormone levels.
View Article and Find Full Text PDFJ Comp Neurol
September 2025
Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA.
The dorsal midline thalamus (DMT) is composed of the paraventricular (PV) and paratenial (PT) nuclei. While the anatomical and functional properties of PV are well-established, PT has remarkably received very little attention-even though the efferent projections of PV and PT are very similar. Using a combination of retrograde tracing and immunohistochemistry, we examined the anatomical inputs to PT and compared them with those to the anterior and posterior PV and to the anterodorsal nucleus of the thalamus.
View Article and Find Full Text PDFElife
August 2025
Swiss Federal Institute of Technology (ETH Zürich), Department of Health Sciences and Technology, Zürich, Switzerland.
Tracking net body movement in real time may enable the brain to estimate ongoing demands and thus better orchestrate muscle tone, energy balance, and arousal. To identify neural populations specializing in tracking net body movement, here, we compared self-initiated movement-related activity across genetically-defined subcortical neurons in the mouse brain, including dopaminergic, glutamatergic, noradrenergic, and key peptidergic neurons. We show that hypothalamic orexin/hypocretin-producing neurons (HONs) are exceptionally precise movement-trackers, encoding net body movement across multiple classified behaviors with a high degree of precision, independent of head acceleration.
View Article and Find Full Text PDF