Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Predation is one of the most fundamental ecological processes affecting biotic communities. Terrestrial predators that live at ecosystem boundaries may alter the diversity of terrestrial organisms, but they may also have cross-ecosystem cascading effects when they feed on organisms with complex life cycles (i.e. organisms that shift from aquatic juvenile stages to terrestrial adult stages) or inhibit female oviposition in the aquatic environment. The predatory ant Odontomachus hastatus establishes its colonies among roots of Vriesea procera, an epiphytic bromeliad species with water-filled tanks that shelters many terrestrial and aquatic organisms. Ants may impact terrestrial communities and deter adult insects from ovipositing in the water of bromeliads via consumptive and non-consumptive effects. Ants do not forage within the aquatic environment; thus, they may be more efficient predators on terrestrial organisms. Therefore, we predict that ants will have stronger effects on terrestrial than aquatic food webs. However, such effects may also be site contingent and depend on the local composition of food webs. To test our hypothesis, we surveyed bromeliads with and without O. hastatus colonies from three different coastal field sites in the Atlantic Forest of southeast Brazil, and quantified the effect of this predatory ant on the composition, density and richness of aquatic and terrestrial metazoans found in these bromeliads. We found that ants changed the composition and reduced the overall density of aquatic and terrestrial metazoans in bromeliad ecosystems. However, effects of ants on species diversity were contingent on site. In general terms, the effects of the ant on aquatic and terrestrial metazoan communities were similar in strength and magnitude. Ants reduced the density of virtually all aquatic functional groups, especially detritivore insects as well as metazoans that reach bromeliads through phoresy on the skin of terrestrial animals (i.e. Ostracoda and Helobdella sp.). Our results suggest that the cross-ecosystem effect of this terrestrial predator on the aquatic metazoans was at least as strong as its within-ecosystem effect on the terrestrial ecosystem, and demonstrates that the same predator can simultaneously initiate cascades in multiple ecosystems.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1365-2656.12671DOI Listing

Publication Analysis

Top Keywords

terrestrial
13
food webs
12
aquatic terrestrial
12
aquatic
10
terrestrial organisms
8
aquatic environment
8
predatory ant
8
terrestrial aquatic
8
effects ants
8
terrestrial metazoans
8

Similar Publications

Environmental Stresses Constrain Soil Microbial Community Functions by Regulating Deterministic Assembly and Niche Width.

Mol Ecol

September 2025

State Key Laboratory of Soil and Water Conservation and Desertification Control, College of Soil and Water Conservation Science and Engineering, Northwest A&F University, Shaanxi, People's Republic of China.

Increasing evidence indicates that the loss of soil microbial α-diversity triggered by environmental stress negatively impacts microbial functions; however, the effects of microbial α-diversity on community functions under environmental stress are poorly understood. Here, we investigated the changes in bacterial and fungal α- diversity along gradients of five natural stressors (temperature, precipitation, plant diversity, soil organic C and pH) across 45 grasslands in China and evaluated their connection with microbial functional traits. By quantifying the five environmental stresses into an integrated stress index, we found that the bacterial and fungal α-diversity declined under high environmental stress across three soil layers (0-20 cm, 20-40 cm and 40-60 cm).

View Article and Find Full Text PDF

Droughts are increasing with climate change, affecting the functioning of terrestrial ecosystems and limiting their capacity to mitigate rising atmospheric CO levels. However, there is still large uncertainty on the long-term impacts of drought on ecosystem carbon (C) cycling, and how this determines the effect of subsequent droughts. Here, we aimed to quantify how drought legacy affects the response of a heathland ecosystem to a subsequent drought for two life stages of Calluna vulgaris resulting from different mowing regimes.

View Article and Find Full Text PDF

Structure and function of the topsoil microbiome in Chinese terrestrial ecosystems.

Front Microbiol

August 2025

State Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, China.

While soil microorganisms underpin terrestrial ecosystem functioning, how their functional potential adapts across environmental gradients remains poorly understood, particularly for ubiquitous taxa. Employing a comprehensive metagenomic approach across China's six major terrestrial ecosystems (41 topsoil samples, 0-20 cm depth), we reveal a counterintuitive pattern: oligotrophic environments (deserts, karst) harbor microbiomes with significantly greater metabolic pathway diversity (KEGG) compared to resource-rich ecosystems. We provide a systematic catalog of key functional genes governing biogeochemical cycles in these soils, identifying: 6 core CAZyme genes essential for soil organic carbon (SOC) decomposition and biosynthesis; 62 nitrogen (N)-cycling genes (KOs) across seven critical enzymatic clusters; 15 sulfur (S)-cycling genes (KOs) within three key enzymatic clusters.

View Article and Find Full Text PDF

Cancer remains the second leading cause of death worldwide, highlighting the urgent need for novel therapeutic approaches. Fungi are a rich source of bioactive metabolites, some of which exhibit potent anticancer properties. This scoping review evaluates the current research on fungal metabolites with anticancer potential, focusing on species native to Saudi Arabia's unique ecosystem.

View Article and Find Full Text PDF

Soil Carbon Availability Drives Depth-Dependent Responses of Microbial Nitrogen Use Efficiency to Warming.

Glob Chang Biol

September 2025

State Key Laboratory of Vegetation Structure, Function and Construction (VegLab), Ministry of Education Key Laboratory of Earth Surface Processes, and College of Urban and Environmental Sciences, Peking University, Beijing, China.

Microbial nitrogen use efficiency (NUE) describes the partitioning of organic N between microbial growth and N mineralization, which is crucial for assessing soil N retention. However, how warming affects NUE along soil depth remains unclear. Based on a whole-soil-profile warming experiment (0 to 100 cm, +4°C) on the Qinghai-Tibetan Plateau, combined with O and N isotope labeling techniques, we determined soil carbon (C) composition, edaphic properties, and microbial parameters.

View Article and Find Full Text PDF