J Microbiol Biol Educ
August 2025
There is increasing reliance on graduate student teaching assistants (GTAs) in undergraduate education, yet the impact of this role on graduate students is understudied. Previous research has focused on tangible outcomes such as skill development, rather than how GTAs value or find meaning in this role. Our study used a phenomenological approach rooted in self-determination theory to allow graduate students to describe their own experience of being GTAs and how they found value and created meaning through their role.
View Article and Find Full Text PDFThe effects of biodiversity on ecological processes have been experimentally evaluated mainly at the local scale under homogeneous conditions. To scale up experimentally based biodiversity-functioning relationships, there is an urgent need to understand how such relationships are affected by the environmental heterogeneity that characterizes larger spatial scales. Here, we tested the effects of an 800-m elevation gradient (a large-scale environmental factor) and forest habitat (a fine-scale factor) on litter diversity-decomposition relationships.
View Article and Find Full Text PDFSpecies in one ecosystem can indirectly affect multiple biodiversity components and ecosystem functions of adjacent ecosystems. The magnitude of these cross-ecosystem effects depends on the attributes of the organisms involved in the interactions, including traits of the predator, prey and basal resource. However, it is unclear how predators with cross-ecosystem habitat interact with predators with single-ecosystem habitat to affect their shared ecosystem.
View Article and Find Full Text PDFCities can have profound impacts on ecosystems, yet our understanding of these impacts is currently limited. First, the effects of the socioeconomic dimensions of human society are often overlooked. Second, correlative analyses are common, limiting our causal understanding of mechanisms.
View Article and Find Full Text PDFProc Biol Sci
July 2022
Historical and long-term environmental datasets are imperative to understanding how natural systems respond to our changing world. Although immensely valuable, these data are at risk of being lost unless actively curated and archived in data repositories. The practice of data rescue, which we define as identifying, preserving, and sharing valuable data and associated metadata at risk of loss, is an important means of ensuring the long-term viability and accessibility of such datasets.
View Article and Find Full Text PDFThe predicted increase in the intensity and frequency of drought events associated with global climate change will impose severe hydrological stress to freshwater ecosystems, potentially altering their structure and function. Unlike freshwater communities' direct response to drought, their post-drought recovery capacities remain understudied despite being an essential component driving ecosystem resilience. Here we used tank bromeliad as model ecosystem to emulate droughts of different duration and then assess the recovery capacities of ecosystem structure and function.
View Article and Find Full Text PDFCurrent climate change is disrupting biotic interactions and eroding biodiversity worldwide. However, species sensitive to aridity, high temperatures, and climate variability might find shelter in microclimatic refuges, such as leaf rolls built by arthropods. To explore how the importance of leaf shelters for terrestrial arthropods changes with latitude, elevation, and climate, we conducted a distributed experiment comparing arthropods in leaf rolls versus control leaves across 52 sites along an 11,790 km latitudinal gradient.
View Article and Find Full Text PDFThe construction of shelters on plants by arthropods might influence other organisms via changes in colonization, community richness, species composition, and functionality. Arthropods, including beetles, caterpillars, sawflies, spiders, and wasps often interact with host plants via the construction of shelters, building a variety of structures such as leaf ties, tents, rolls, and bags; leaf and stem galls, and hollowed out stems. Such constructs might have both an adaptive value in terms of protection (i.
View Article and Find Full Text PDFWhile future climate scenarios predict declines in precipitations in many regions of the world, little is known of the mechanisms underlying community resilience to prolonged dry seasons, especially in 'naïve' Neotropical rainforests. Predictions of community resilience to intensifying drought are complicated by the fact that the underlying mechanisms are mediated by species' tolerance and resistance traits, as well as rescue through dispersal from source patches. We examined the contribution of in situ tolerance-resistance and immigration to community resilience, following drought events that ranged from the ambient norm to IPCC scenarios and extreme events.
View Article and Find Full Text PDFPredators and prey interact at small spatial scales, but during their lifetime disperse at much larger spatial scales. Trophic metacommunity theory proposes that dispersal is a critical process that determines food web structure at small and large scales. The application of metacommunity theory to empirical systems remains elusive because key parameters such as dispersal and interaction strengths have been very difficult to quantify.
View Article and Find Full Text PDFChanges in global and regional precipitation regimes are among the most pervasive components of climate change. Intensification of rainfall cycles, ranging from frequent downpours to severe droughts, could cause widespread, but largely unknown, alterations to trophic structure and ecosystem function. We conducted multi-site coordinated experiments to show how variation in the quantity and evenness of rainfall modulates trophic structure in 210 natural freshwater microcosms (tank bromeliads) across Central and South America (18°N to 29°S).
View Article and Find Full Text PDFThe structure of ecological networks reflects the evolutionary history of their biotic components, and their dynamics are strongly driven by ecoevolutionary processes. Here, we present an appraisal of recent relevant research, in which the pervasive role of evolution within ecological networks is manifest. Although evolutionary processes are most evident at macroevolutionary scales, they are also important drivers of local network structure and dynamics.
View Article and Find Full Text PDFA rich body of knowledge links biodiversity to ecosystem functioning (BEF), but it is primarily focused on small scales. We review the current theory and identify six expectations for scale dependence in the BEF relationship: (1) a nonlinear change in the slope of the BEF relationship with spatial scale; (2) a scale-dependent relationship between ecosystem stability and spatial extent; (3) coexistence within and among sites will result in a positive BEF relationship at larger scales; (4) temporal autocorrelation in environmental variability affects species turnover and thus the change in BEF slope with scale; (5) connectivity in metacommunities generates nonlinear BEF and stability relationships by affecting population synchrony at local and regional scales; (6) spatial scaling in food web structure and diversity will generate scale dependence in ecosystem functioning. We suggest directions for synthesis that combine approaches in metaecosystem and metacommunity ecology and integrate cross-scale feedbacks.
View Article and Find Full Text PDFBiostatistics courses are integral to many undergraduate biology programs. Such courses have often been taught using point-and-click software, but these programs are now seldom used by researchers or professional biologists. Instead, biology professionals typically use programming languages, such as R, which are better suited to analyzing complex data sets.
View Article and Find Full Text PDFPredicting the biological effects of climate change presents major challenges due to the interplay of potential biotic and abiotic mechanisms. Climate change can create unexpected outcomes by altering species interactions, and uncertainty over the ability of species to develop in situ tolerance or track environmental change further hampers meaningful predictions. As multiple climatic variables shift in concert, their potential interactions further complicate ecosystem responses.
View Article and Find Full Text PDFPredators and prey often differ in body mass. The ratio of predator to prey body mass influences the predator's functional response (how consumption varies with prey density), and therefore, the strength and stability of the predator-prey interaction. The persistence of food chains is maximized when prey species are neither too big nor too small relative to their predator.
View Article and Find Full Text PDFThe mismatch between the turnover rates of predators and prey is one of the oldest explanations for the existence of inverted trophic pyramids. To date, the hypotheses regarding trophic pyramids have all been based on consumptive trophic links between predators and prey, and the relative contribution of non-consumptive effects is still unknown. In this study, we investigated if the inversion of pyramids in bromeliad ecosystems is driven by (i) a rapid colonization of organisms having short cohort interval production (CPI), and (ii) the prevalence of consumptive or non-consumptive effects of top predators.
View Article and Find Full Text PDF