98%
921
2 minutes
20
Although several proteins have been implicated in secretory vesicle tethering, the identity and mechanical properties of the components forming the physical vesicle-plasma membrane link remain unknown. Here we present the first experimental measurements of nanomechanical properties of secretory vesicle-plasma membrane tethers using combined AFM force clamp and TIRF microscopy on membrane sheets from PC12 cells expressing the vesicle marker ANF-eGFP. Application of pulling forces generated tether extensions composed of multiple steps with variable length. The frequency of short (<10 nm) tether extension events was markedly higher when a fluorescent vesicle was present at the cantilever tip and increased in the presence of GTPγS, indicating that these events reflect specifically the properties of vesicle-plasma membrane tethers. The magnitude of the short tether extension events is consistent with extension lengths expected from progressive unfolding of individual helices of the exocyst complex, supporting its direct role in forming the physical vesicle-plasma membrane link.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5360256 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0173993 | PLOS |
bioRxiv
August 2025
Departments of Chemical & Biological Engineering, Princeton University, Princeton, NJ 08544.
The construction of complex tissue shapes during embryonic development results from spatial patterns of gene expression and mechanical forces fueled by chemical energy from ATP hydrolysis. We find that chemical energy is similarly patterned during morphogenesis. Specifically, mitochondria are locally enriched at the apical sides of epithelial cells during apical constriction, which is widely used across the animal kingdom to fold epithelial tissues.
View Article and Find Full Text PDFSoft Matter
September 2025
Mechanical Engineering Department, Institute of Applied Mathematics School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
Hyperelastic material characterization is crucial for sensing and understanding the behavior of soft materials-such as tissues, rubbers, hydrogels, and polymers-under quasi-static loading before failure. Traditional methods typically rely on uniaxial tensile tests, which require the cumbersome preparation of dumbbell-shaped samples for clamping in a uniaxial testing machine. In contrast, indentation-based methods, which are non-destructive and can be conducted without sample preparation, remain underexplored.
View Article and Find Full Text PDFCNS Neurosci Ther
September 2025
Department of Anesthesiology, Northern Jiangsu People's Hospital, Yangzhou, China.
Aims: This study is to investigate the role of Endothelin-converting enzyme-like 1 (ECEL1) in neuropathic pain (NP).
Methods: The expression of ECEL1 was modulated by injecting adeno-associated virus 5 (AAV5) carrying Ecel1 shRNA or full-length Ecel1 into the dorsal root ganglion (DRG) of mice with a chronic constriction injury (CCI) model. Then, various nociceptive responses were evaluated.
Sci Adv
September 2025
Department of Physiology, University of Pennsylvania, Philadelphia, PA, USA.
Chromosome motion at spindle microtubule plus ends relies on dynamic molecular bonds between kinetochores and proximal microtubule walls. Under opposing forces, kinetochores move bidirectionally along these walls while remaining near the ends, yet how continuous wall sliding occurs without end detachment remains unclear. Using ultrafast force-clamp spectroscopy, we show that single Ndc80 complexes, the primary microtubule-binding kinetochore component, exhibit processive, bidirectional sliding.
View Article and Find Full Text PDFNat Commun
September 2025
School of Materials Science and Engineering, UNSW, Sydney, NSW, Australia.
Metastasis is responsible for most cancer-related deaths. However, only a fraction of circulating cancer cells succeed in forming secondary tumours, indicating that adaptive mechanisms during circulation play a part in dissemination. Here, we report that constriction during microcapillary transit triggers reprogramming of melanoma cells to a tumorigenic cancer stem cell-like state.
View Article and Find Full Text PDF