Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The aggregation of three different cyclodextrins (CDs): 2-hydroxypropyl-β-cyclodextrin (HP-β-CD), 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) and sulfobutylether-β-cyclodextrin (SBE-β-CD) was studied. The critical aggregation concentration (cac) of these three CDs is quite similar and is situated at ca. 2% (m/v). There was only a small difference in the cac values determined by DLS and H NMR. DLS measurements revealed that CDs in solution have three size populations wherein one of them is that of a single CD molecule. The size of aggregates determined by TEM appears to be similar to the size of the aggregates in the second size distribution determined by DLS. Isodesmic and K-K self-assembly models were used for studying the aggregation process of HP-β-CD, HP-γ-CD and SBE-β-CD. The results showed that the aggregation process of these CDs is a cooperative one, where the first step of aggregation is less favorable than the next steps. The determined thermodynamic parameters showed that the aggregation process of all three CDs is spontaneous and exothermic and it is driven by an increase of the entropy of the environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijpharm.2017.02.037DOI Listing

Publication Analysis

Top Keywords

size aggregates
12
aggregation process
12
critical aggregation
8
aggregation concentration
8
isodesmic k-k
8
three cds
8
determined dls
8
aggregation
7
size
5
cds
5

Similar Publications

Indomethacin is a poorly soluble weak acid and a widely used model drug in enabling formulations. When using microdialysis for sampling of indomethacin from a buffer containing calcium, we observed the formation of nanoparticles of a poorly water-soluble indomethacin calcium salt. The nanoparticles were not detected during solubility experiments where filtration had been used to separate the solid phase because the nanoparticles were unusually small in size, less than 2 nm in diameter as determined by DLS.

View Article and Find Full Text PDF

Carvacrol encapsulation system based on casein-chitosan coacervates: Stability regulation and mechanism of ultrasonication-assisted core-shell microcapsules.

Food Chem

September 2025

College of Food Science and Engineering, Northwest A&F University, Yangling, 712100, Shaanxi, China; Laboratory of Quality & Safety Risk Assessment for Agro-Products (Yangling), Ministry of Agriculture and Rural Affairs of the People's Republic of China, Yangling 712100, China. Electronic address: z

Carvacrol (CAR) is a naturally occurring bioactive compound that is chemically unstable, and microencapsulation technology effectively protects its active components. Casein (CS) and chitosan (CH) were used for the first time as carriers to encapsulate CAR, forming highly stable carvacrol microcapsules (CAR@CS-CH). Under conditions of a 1:1 mass ratio of CS to CH and a pH of 5.

View Article and Find Full Text PDF

Rationale And Objectives: This study systematically evaluates the diagnostic performance of artificial intelligence (AI)-driven and conventional radiomics models in detecting muscle-invasive bladder cancer (MIBC) through meta-analytical approaches. Furthermore, it investigates their potential synergistic value with the Vesical Imaging-Reporting and Data System (VI-RADS) and assesses clinical translation prospects.

Methods: This study adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines.

View Article and Find Full Text PDF

Benign lymphoepithelial tumors of salivary glands had been restricted to sebaceous and non-sebaceous (NSLA) lymphadenomas. However, salivary neoplasms recapitulating carcinoma showing thymus-like elements (CASTLE) have been the subject of recent case reports. We reviewed clinicopathological, immunohistochemical, and molecular findings in 20 salivary gland tumors with thymus-like phenotype (18 histologically benign and two with malignant component).

View Article and Find Full Text PDF

Acidochromic fluorescent membranes have garnered significant research interest owing to their potential in real-time environmental monitoring and smart sensing applications. However, the rational design of membranes to optimize their structure-property interplay for enhanced acidochromic performance remains further explored. Herein, we prepared various stimulus-responsive micro/nanofibrous membranes using electrospinning technology by incorporating a fluorescent small molecule (TPECNPy-2) with thermoplastic polyurethane (TPU) to obtain specific properties.

View Article and Find Full Text PDF