Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Summary: We present 'Threshold-seq,' a new approach for determining thresholds in deep-sequencing datasets of short RNA transcripts. Threshold-seq addresses the critical question of how many reads need to support a short RNA molecule in a given dataset before it can be considered different from 'background.' The proposed scheme is easy to implement and incorporate into existing pipelines.

Availability And Implementation: Source code of Threshold-seq is freely available as an R package at: http://cm.jefferson.edu/threshold-seq/.

Contact: isidore.rigoutsos@jefferson.edu.

Supplementary Information: Supplementary data are available at Bioinformatics online.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870860PMC
http://dx.doi.org/10.1093/bioinformatics/btx073DOI Listing

Publication Analysis

Top Keywords

short rna
8
threshold-seq tool
4
tool determining
4
determining threshold
4
threshold short
4
short rna-seq
4
rna-seq datasets
4
datasets summary
4
summary 'threshold-seq'
4
'threshold-seq' approach
4

Similar Publications

Purpose: Advancements in sequencing technologies have significantly improved clinical genetic testing, yet the diagnostic yield remains around 30-40%. Emerging technologies are now being deployed to address the remaining diagnostic gap.

Methods: We tested whether short-read genome sequencing could increase the diagnostic yield in individuals enrolled into the UCI-GREGoR research study, who had suspected Mendelian conditions and prior inconclusive testing.

View Article and Find Full Text PDF

DeepRNAac4C: a hybrid deep learning framework for RNA N4-acetylcytidine site prediction.

Front Genet

August 2025

Hunan Provincial Key Laboratory of Finance and Economics Big Data Science and Technology, Hunan University of Finance and Economics, Changsha, China.

RNA N4-acetylcytidine (ac4C) is a crucial chemical modification involved in various biological processes, influencing RNA properties and functions. Accurate prediction of RNA ac4C sites is essential for understanding the roles of RNA molecules in gene expression and cellular regulation. While existing methods have made progress in ac4C site prediction, they still struggle with limited accuracy and generalization.

View Article and Find Full Text PDF

Purpose: To verify the stability and reliability of circulating microRNA (miRNA) profiles in plasma and serum under different processing and storage conditions to inform future applications to circulating biomarker analyses.

Background: The development of blood-based methods for early disease detection has become increasingly desirable across various medical fields. RNA profiles have been investigated but have been a challenge due to rapid degradation of the analyte by ubiquitous RNases.

View Article and Find Full Text PDF

Background: Activin A/Smad signaling plays an important role in promoting cancer stemness and chemoresistance in pancreatic ductal adenocarcinoma (PDAC), however the precise regulation on the termination of this pathway has not been fully understood.

Methods: LncRNA SLC7A11-AS1 interacting proteins were identified through RNA pull-down followed by LC-MS/MS. The protein interaction was analyzed by co-immunoprecipitation.

View Article and Find Full Text PDF

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF