98%
921
2 minutes
20
Background: Previous genomewide association studies (GWASs) have identified a number of putative risk loci for alcohol dependence (AD). However, only a few loci have replicated and these replicated variants only explain a small proportion of AD risk. Using an innovative approach, the goal of this study was to generate hypotheses about potentially causal variants for AD that can be explored further through functional studies.
Methods: We employed targeted capture of 71 candidate loci and flanking regions followed by next-generation deep sequencing (mean coverage 78X) in 806 European Americans. Regions included in our targeted capture library were genes identified through published GWAS of alcohol, all human alcohol and aldehyde dehydrogenases, reward system genes including dopaminergic and opioid receptors, prioritized candidate genes based on previous associations, and genes involved in the absorption, distribution, metabolism, and excretion of drugs. We performed single-locus tests to determine if any single variant was associated with AD symptom count. Sets of variants that overlapped with biologically meaningful annotations were tested for association in aggregate.
Results: No single, common variant was significantly associated with AD in our study. We did, however, find evidence for association with several variant sets. Two variant sets were significant at the q-value <0.10 level: a genic enhancer for ADHFE1 (p = 1.47 × 10 ; q = 0.019), an alcohol dehydrogenase, and ADORA1 (p = 5.29 × 10 ; q = 0.035), an adenosine receptor that belongs to a G-protein-coupled receptor gene family.
Conclusions: To our knowledge, this is the first sequencing study of AD to examine variants in entire genes, including flanking and regulatory regions. We found that in addition to protein coding variant sets, regulatory variant sets may play a role in AD. From these findings, we have generated initial functional hypotheses about how these sets may influence AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5378639 | PMC |
http://dx.doi.org/10.1111/acer.13352 | DOI Listing |
J Infect Dev Ctries
August 2025
Clinical laboratory, Fujian Children's Hospital (Fujian Branch of Shanghai Children's Medical Center), College of Clinical Medicine for Obstetrics and Gynecology and Pediatrics, Fujian Medical University, Fuzhou 350001, China.
Introduction: Community-acquired pneumonia (CAP) is a common respiratory disease in children and a significant factor in child mortality.
Methodology: We aimed to investigate metagenomic next-generation sequencing (mNGS) technology to explore pathogens and epidemiological characteristics of pediatric CAP. We retrospectively analyzed mNGS detection and microbiological culture results of bronchoalveolar lavage fluid (BALF) and sputum samples from children with CAP.
J Infect Dev Ctries
August 2025
Department of Emergency, Changhai Hospital, Naval Medical University, Shanghai, China.
Introduction: Nocardia spp. are Gram-positive, aerobic actinomycetes, which can cause pulmonary, primary cutaneous, and lymphocutaneous infections. However, severe pneumonia caused by Nocardia otitidiscaviarum has rare reported.
View Article and Find Full Text PDFJ Infect Dev Ctries
August 2025
Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China.
Background: Pneumonia with an empyema caused by anaerobic bacteria is rare but can be life-threatening, especially in immunocompromised patients.
Case Presentation: A 67-year-old man with diabetes and hypertension who presented with pneumonia and pleural effusion and was unresponsive to initial broad-spectrum antibiotics is presented. Next-generation sequencing identified Parvimonas micra and other pathogens.
Cell Rep Methods
July 2025
Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan 430070, P.R. China; Key Laboratory of Smart Farming for Agricultural Animals, Ministry of Agriculture and Rural Affairs, Beijing, P.R. China; College of Informatics, Huazhong Agricult
We introduce a cell-free DNA (cfDNA) fragmentation pattern: the fragment dispersity index (FDI), which integrates information on the distribution of cfDNA fragment ends with the variation in fragment coverage, enabling precise characterization of chromatin accessibility in specific regions. The FDI shows a strong correlation with chromatin accessibility and gene expression, and regions with high FDI are enriched in active regulatory elements. Using whole-genome cfDNA data from five datasets, we developed and validated the FDI-oncology model, which demonstrates robust performance in early cancer diagnosis, subtyping, and prognosis.
View Article and Find Full Text PDFBlood Neoplasia
November 2025
Section of Hematology/Oncology, The University of Chicago, Chicago, IL.
Modern multiple myeloma treatment enables deep and sustained responses, necessitating assessment of minimal residual disease (MRD) in the bone marrow to refine response categorization. Recently, mass spectrometry (MS)-based methods have emerged as highly sensitive tools for measuring MRD in the peripheral blood. However, the role specific MS techniques play in response categorization has yet to be established.
View Article and Find Full Text PDF