Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Macrophages (Mϕs) are key players in the coordination of the lifesaving or detrimental immune response against infections. The mechanistic understanding of the functional modulation of Mϕs by pathogens and pharmaceutical interventions at the signal transduction level is still far from complete. The complexity of pathways and their cross-talk benefits from holistic computational approaches. In the present study, we reconstructed a comprehensive, validated, and annotated map of signal transduction pathways in inflammatory Mϕs based on the current literature. In a second step, we selectively expanded this curated map with database knowledge. We provide both versions to the scientific community via a Web platform that is designed to facilitate exploration and analysis of high-throughput data. The platform comes preloaded with logarithmic fold changes from 44 data sets on Mϕ stimulation. We exploited three of these data sets-human primary Mϕs infected with the common lung pathogens , , or -in a case study to show how our map can be customized with expression data to pinpoint regulated subnetworks and druggable molecules. From the three infection scenarios, we extracted a regulatory core of 41 factors, including TNF, CCL5, CXCL10, IL-18, and IL-12 p40, and identified 140 drugs targeting 16 of them. Our approach promotes a comprehensive systems biology strategy for the exploitation of high-throughput data in the context of Mϕ signal transduction. In conclusion, we provide a set of tools to help scientists unravel details of Mϕ signaling. The interactive version of our Mϕ signal transduction map is accessible online at https://vcells.net/macrophage.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1502513DOI Listing

Publication Analysis

Top Keywords

signal transduction
20
high-throughput data
12
transduction map
8
mϕ signal
8
data
6
signal
5
transduction
5
map
5
interactive macrophage
4
macrophage signal
4

Similar Publications

The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.

View Article and Find Full Text PDF

Progress of estrogen receptor and spliceosome in endometrial carcinoma.

Front Endocrinol (Lausanne)

September 2025

Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, China.

Endometrial cancer (EC) is one of the most common gynecological cancers in developed countries. Like EC, most female reproductive tract malignancies are thought to be hormonally driven, with estrogen signaling acting as an oncogenic signal. The actions of estrogen are mediated through the classical nuclear estrogen receptors α (ER-α) and β (ER-β) as well as transmembrane G protein-coupled estrogen receptors (GPR30 and GPER).

View Article and Find Full Text PDF

Protein kinase C and endothelial dysfunction in select vascular diseases.

Front Cardiovasc Med

August 2025

Department of Surgery, Heart Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.

Protein kinases have crucial roles in intracellular signal transduction pathways that affect a wide range of biochemical processes, including apoptosis, metabolism, proliferation, and protein synthesis. Vascular endothelial cells are important regulators of vasomotor tone, tissue/organ perfusion, and inflammation. Since its discovery in the late 1970s, a growing body of literature implicates protein kinase C (PKC) in pathways involving angiogenesis, endothelial permeability, microvascular tone, and endothelial activation.

View Article and Find Full Text PDF

Analysis of physiological characteristics and gene co-expression networks in roots under low-temperature stress.

Front Plant Sci

August 2025

Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, Heilongjiang, China.

is the most widely cultivated high-protein forage crop globally. However, its cultivation in high-latitude and cold regions of China is significantly hindered by low-temperature stress, particularly impacting the root system, the primary functional tissue crucial for winter survival. The physiological and molecular mechanisms underlying the root system's adaptation and tolerance to low temperatures remain poorly understood.

View Article and Find Full Text PDF

Neuronal development and function are orchestrated by a plethora of regulatory mechanisms that control the abundance, localization, interactions, and function of proteins. A key role in this regard is assumed by post-translational protein modifications (PTMs). While some PTM types, such as phosphorylation or ubiquitination, have been explored comprehensively, PTMs involving ubiquitin-like modifiers (Ubls) have remained comparably enigmatic (Ubls).

View Article and Find Full Text PDF