98%
921
2 minutes
20
As environmental risk factors (ERFs) play an important role in the pathogenesis of Kashin-Beck disease (KBD), it is important to identify the interaction between ERFs and differentially expression genes (DEGs) in KBD. The environmental response genes (ERGs) were analyzed in cartilage of KBD in comparison to normal controls.We searched 5 English and 3 Chinese databases from inception to September 2015, to identify case-control studies that examined ERFs for KBD using integrative meta-analysis and systematic review. Total RNA was isolated from articular cartilage of KBD patients and healthy controls. Human whole genome microarray chip (Agilent) was used to analyze the amplified, labeled, and hybridized total RNA, and the validated microarray data were partially verified using real-time quantitative polymerase chain reaction (qRT-PCR). The ERGs were derived from the Comparative Toxicogenomics Database. The identified ERGs were subjected to KEGG pathway enrichment, biological process (BP), and interaction network analyses using the Database for Annotation, Visualization and Integrated Discovery (DAVID) v6.7, and STRING.The trace elements (selenium and iodine), vitamin E, and polluted grains (T-2 toxin/HT-2 toxin, deoxynivalenol, and nivalenol) were identified as the ERFs for KBD using meta-analysis and review. We identified 21 upregulated ERGs and 7 downregulated ERGs in cartilage with KBD compared with healthy controls, which involved in apoptosis, metabolism, and growth and development. KEGG pathway enrichment analysis found that 2 significant pathways were involved with PI3K-Akt signaling pathway and P53 signaling pathway, and gene ontology function analysis found 3 BPs involved with apoptosis, death, and cell death in KBD cartilage.According to previous results and our own research, we suggest that the trace element selenium and vitamin E induce PI3K-Akt signaling pathway and the mycotoxins (T-2 toxin/HT-2 toxin and DON) induce P53 signaling pathway, contributing to the development of KBD, and chondrocyte apoptosis and cell death.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5207552 | PMC |
http://dx.doi.org/10.1097/MD.0000000000005669 | DOI Listing |
Int J Gen Med
September 2025
Suzhou Medical College of Soochow University, Suzhou, Jiangsu, People's Republic of China.
Purpose: The fourth most common cause of cancer-related deaths in women is cervical cancer. Though treatment of early-stage cervical cancer is often effective, middle and advanced stage cervical cancer is hard to treat and prone to recurrence. We sought to explore the mechanism underlying cervical cancer progression to identify new therapeutic approaches.
View Article and Find Full Text PDFResearch (Wash D C)
September 2025
State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, China.
Triple-negative breast cancer (TNBC) is the most aggressive breast cancer subtype, characterized by a high propensity for metastasis, poor prognosis, and limited treatment options. Research has demonstrated a substantial correlation between the expression of protein arginine N-methyltransferase 1 (PRMT1) and enhanced proliferation, metastasis, and poor outcomes in TNBC. However, the specific role of PRMT1 in lung metastasis and chemoresistance remains unclear.
View Article and Find Full Text PDFInt J Nanomedicine
September 2025
Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People's Republic of China.
The STING pathway has emerged as a therapeutic target in tumor immunotherapy due to its ability to induce interferon responses, enhance antigen presentation and activate T cells. Despite its therapeutic potential, STING pathway-based tumor immunotherapy has been limited by challenges in poor cellular delivery, rapid degradation of STING agonists, and potential systemic toxicity. Recently, advancements in nanotechnology have tried to overcome these limitations by providing platforms for more accurate and efficient targeted delivery of agonists, more moderate sustained STING pathway activation, and more efficient immune presentation and anti-tumor immune response.
View Article and Find Full Text PDFExp Ther Med
November 2025
Department of Obstetrics and Gynecology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu 226007, P.R. China.
Gestational diabetes mellitus (GDM), a type of diabetes mellitus occurring in pregnant women, increases the risk of birth trauma. Solute carrier family 2 member 4 (SLC2A4) polymorphism is notably associated with GDM susceptibility; however, the mechanism is unknown. In the present study, HTR-8/SVneo cells were treated with high glucose concentrations and transfected with SLC2A4 and Forkhead box O (FoxO)1 to investigate their roles in the insulin (INS) resistance of GDM trophoblast cells.
View Article and Find Full Text PDFExp Ther Med
November 2025
School of Basic Medical Sciences, Binzhou Medical University, Yantai, Shandong 264003, P.R. China.
Acute kidney injury (AKI) is a group of common clinical syndromes characterized by a rapid decline in renal function over a short period of time. At present, the treatment methods are limited, and research is needed to identify drugs that could alleviate renal ischemia-reperfusion (I/R) injury. Tetramethylpyrazine (TMP) is a bioactive alkaloid extracted from the Chinese herbal medicine Chuanxiong.
View Article and Find Full Text PDF