Modelling the photochemical attenuation pathways of the fibrate drug gemfibrozil in surface waters.

Chemosphere

Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy; Università degli Studi di Torino, Centro Interdipartimentale NatRisk, Via L. Da Vinci 44, 10095 Grugliasco (TO), Italy. Electronic address:

Published: March 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Gemfibrozil (GFZ) is a relatively persistent pollutant in surface-water environments and it is rather recalcitrant to biological degradation. The GFZ photochemical lifetimes are relatively short in shallow waters with low levels of dissolved organic carbon (DOC), but they can reach the month-year range in deep and high-DOC waters. The main reason is that GFZ undergoes negligible reaction with singlet oxygen or degradation sensitised by the triplet states of chromophoric dissolved organic matter, which are the usually prevalent photochemical pathways in deep and high-DOC sunlit waters. Nitrate and nitrite scarcely affect the overall GFZ lifetimes, but they can shift photodegradation from direct photolysis to the OH process. These two pathways are the main GFZ phototransformation routes, with the direct photolysis prevailing in shallow environments during summer. Under these conditions the GFZ photochemical lifetimes are also shorter and the environmental significance of photodegradation correspondingly higher. The direct photolysis of GFZ under UVB irradiation yielded several transformation intermediates deriving from oxidation or cleavage of the aliphatic lateral chain. A quinone derivative (2,5-dimethyl-1,4-benzoquinone), a likely oxidation product of the transformation intermediate 2,5-dimethylphenol, is expected to be the most acutely and chronically toxic compound arising from GFZ direct photolysis. Interestingly, literature evidence suggests that the same toxic intermediate would be formed upon OH reaction.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2016.11.135DOI Listing

Publication Analysis

Top Keywords

direct photolysis
16
gfz
8
gfz photochemical
8
photochemical lifetimes
8
dissolved organic
8
deep high-doc
8
modelling photochemical
4
photochemical attenuation
4
attenuation pathways
4
pathways fibrate
4

Similar Publications

Quinoline as a Photochemical Toolbox: From Substrate to Catalyst and Beyond.

Acc Chem Res

September 2025

Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W, Montréal, Québec H3A 0B8, Canada.

ConspectusMolecular photochemistry, by harnessing the excited states of organic molecules, provides a platform fundamentally distinct from thermochemistry for generating reactive open-shell or spin-active species under mild conditions. Among its diverse applications, the resurgence of the Minisci-type reaction, a transformation historically reliant on thermally initiated radical conditions, has been fueled by modern photochemical strategies with improved efficiency and selectivity. Consequently, the photochemical Minisci-type reaction ranks among the most enabling methods for C()-H functionalizations of heteroarenes, which are of particular significance in medicinal chemistry for the rapid diversification of bioactive scaffolds.

View Article and Find Full Text PDF

Dissolved organic matter-mediated photosensitized activation of peracetic acid for micropollutant abatement in wastewater effluent.

J Hazard Mater

August 2025

State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of the Environment, Nanjing University, Nanjing, China; Institute for the Environment and Health, Nanjing University Suzhou Campus, Suzhou, China. Electronic address:

The in-situ utilization of dissolved organic matter (DOM) for photosensitized activation of chemical oxidants towards micropollutant abatement presents a promising strategy aligned with the UN's Sustainable Development Goals. This study investigates the degradation of micropollutants via DOM-mediated photosensitized activation of peracetic acid (PAA) under solar irradiation and elucidates the underlying mechanisms. In wastewater effluent containing 5 mg/L DOM and 83 μM PAA, sunlight exposure facilitated DOM-mediated PAA activation, increasing the concentration of oxidative reactive species (ORS) by 50 % compared to DOM-free conditions.

View Article and Find Full Text PDF

Trifluoroacetaldehyde (CFCHO) is formed in the atmosphere by the oxidation of a number of fluorinated, organic compounds of anthropogenic origin. The reaction of CFCHO with the OH radical is a potential source of atmospheric trifluoroacetic acid (TFA) which is a highly persistent, water-soluble compound that may accumulate in aquatic ecosystems and for which uncertainty about its sources, fate, and potential ecological impact persists. In light of growing concerns about the impact of TFA, we present the first study of the temperature dependence of the rate coefficient for the title reaction over the atmospherically relevant temperature range of 204 K to 361 K.

View Article and Find Full Text PDF

Ni-catalyzed cross-coupling is a powerful strategy to forge C(sp)-C(sp) bonds. Typically, to do so requires overcoming a challenging C-C bond-forming reductive elimination, often enabled by the intermediacy of highly oxidized Ni species or outer-sphere processes. While direct C(sp)-C(sp) reductive elimination from the Ni base oxidation state is normally thermally inaccessible, light-activation provides an avenue to affect such transformations.

View Article and Find Full Text PDF

Ambroxol (AMB), a widely used expectorant drug, has been ubiquitously detected in aquatic environments due to its limited metabolism in the human body. Herein, we systematically investigated the photodegradation of AMB in waters upon natural sunlight irradiation. AMB has a p value of 8.

View Article and Find Full Text PDF