Analysis of whole chloroplast genomes from the genera of the Clauseneae, the curry tribe (Rutaceae, Citrus family).

Mol Phylogenet Evol

Department of Botany and Laboratories of Analytical Biology, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA. Electronic address:

Published: December 2017


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Clauseneae (Aurantioideae, Rutaceae) is a tribe in the Citrus family that, although economically important as it contains the culinary and medicinally-useful curry tree (Bergera koenigii), has been relatively understudied. Due to the recent significant taxonomic changes made to this tribe, a closer inspection of the genetic relationships among its genera has been warranted. Whole genome skimming was used to generate chloroplast genomes from six species, representing each of the four genera (Bergera, Clausena, Glycosmis, Micromelum) in the Clauseneae tribe plus one closely related outgroup (Merrillia), using the published plastome sequence of Citrus sinensis as a reference. Phylogenetically informative character (PIC) data were analyzed using a genome alignment of the seven species, and variability frequency among the species was recorded for each coding and non-coding region, with the regions of highest variability identified for future phylogenetic studies. Non-coding regions exhibited a higher percentage of variable characters as expected, and the phylogenetic markers ycf1, matK, rpoC2, ndhF, trnS-trnG spacer, and trnH-psbA spacer proved to be among the most variable regions. Other markers that are frequently used in phylogenetic studies, e.g. rps16, atpB-rbcL, rps4-trnT, and trnL-trnF, proved to be far less variable. Phylogenetic analyses of the aligned sequences were conducted using Bayesian inference (MrBayes) and Maximum Likelihood (RAxML), yielding highly supported divisions among the four genera.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2016.12.015DOI Listing

Publication Analysis

Top Keywords

chloroplast genomes
8
citrus family
8
phylogenetic studies
8
proved variable
8
analysis chloroplast
4
genera
4
genomes genera
4
genera clauseneae
4
clauseneae curry
4
tribe
4

Similar Publications

Comprehensive sampling from mitochondrial genomes substantiates the Neoproterozoic origin of land plants.

Plant Commun

September 2025

College of Horticulture, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China. Electronic address:

Molecular phylogenetics illustrates the evolution and divergence of green plants by employing sequence data from various sources. Interestingly, phylogenetic reconstruction based on mitochondrial genes tends to exhibit incongruence with those derived from nuclear and chloroplast genes. Although the uniparental inheritance and conservatively retained protein-coding genes of mitochondrial genomes inherently exclude certain potential factors that affect phylogenetic reconstruction, such as hybridization and gene loss, the utilization of mitochondrial genomes for phylogeny and divergence time estimation remains limited.

View Article and Find Full Text PDF

The complete chloroplast genome of Franch. & Sav. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Jiangsu Key Laboratory for Conservation and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, Nanjing, China.

Here, we present the first complete chloroplast genome of (154,018 bp), which exhibits a typical quadripartite structure, including an LSC (83,966 bp), SSC (18,910 bp), and two IRs (25,571 bp each). A total of 133 genes were annotated, with 114 unique genes and 19 duplicated in the IRs. .

View Article and Find Full Text PDF

The complete chloroplast genome of L. and its phylogenetic analysis.

Mitochondrial DNA B Resour

September 2025

Heze Municipal Bureau of Agriculture and Rural Affairs, Heze, P. R. China.

L. 1753 is a perennial herb of the family Asteraceae, often cultivated as an ornamental flower. The species has also been reported to contain a wide range of phytochemicals and to exhibit diverse pharmacological activities.

View Article and Find Full Text PDF

Plant mitochondrial genomes are characterized by their complex compositions and structures, large genomes, rapid recombination and evolution rates, and frequent intracellular gene transfer events. Centipedegrass, known as "Chinese turfgrass", is a warm-season turfgrass that exhibits excellent tolerance to both biotic and abiotic stresses. The chloroplast genome, with 139,107 bp, and the mitochondrial genome, with 564,432 bp, were both assembled into a single circular structure.

View Article and Find Full Text PDF

GOLDEN2-LIKEs (GLKs) are important transcription factors for the chloroplast development influencing photosynthesis, nutrition, senescence, and stress response in plants. Sunflower () is a highly photosynthetic plant; here, a -homologues gene was identified from the sunflower genome by bioinformatics. To analyze the bio-function of , transgenic rice plants overexpressing () were constructed and characterized via phenotype.

View Article and Find Full Text PDF